Since it is known that sialic acid participates in neuronal plasticity, it is resonable to investigate its role in microglia-neuron interactions. In this study, we tested the effects of enzymatic removal of sialic acid on neurite and cell body density in microglia-neuron co-cultures. Additionaly, we analyzed the expression of Siglec-F protein, putative receptor for sialic acids, in microglial cells as well as its affinity to neurons. The results showed that removal of sialic acids affects neuronal integrity and changes microglial morphology. In presence of microglial cells, endoneuraminidase and α-neuraminidase significantly reduced neurite density (p<0.05). Endoneuraminidase (p<0.05) and α-neuraminidase (p>0.05) decreased the number of neuronal cell bodies in comparison to control co-cultures. Neuraminidases-treated neurons showed reduced binding of Siglec-F protein, which we found in microglial cells. Our results suggest that interactions between sialic acids and Siglec receptors may protect neuronal integrity during neurodegenerative processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellimm.2011.12.002 | DOI Listing |
Objective: Aim: To investigate the peculiarities of deviations of preoperative values of biochemical markers of inflammation in the blood serum of patients with degenerative diseases of the lumbar spine after transpedicular fixation, with a complicated postoperative course to predict the development of various postoperative complications.
Patients And Methods: Materials and Methods: The content of glycoproteins (GP), sialic acids (SA), C-reactive protein (CRP), seroglicoids (SG), haptoglobin (HG), Veltman`s test (VT) were investigated. The results are comparable by the Student-Fisher method.
Genome Biol Evol
January 2025
Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
The human malaria parasite Plasmodium falciparum evolved from a parasite that infects gorillas, termed Plasmodium praefalciparum. The sialic acids on glycans on the surface of erythrocytes differ between humans and other apes. It has recently been shown that the P.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China.
Introduction: The H9N2 avian influenza virus is widely disseminated in poultry and poses a zoonotic threat, despite vaccination efforts. Mutations at residue 198 of hemagglutinin (HA) are critical for antigenic variation and receptor-binding specificity, but the underlying molecular mechanisms remain unclear. This study explores the molecular mechanisms by which mutations at the HA 198 site affect the antigenicity, receptor specificity, and binding affinity of the H9N2 virus.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Physics, Faculty of Sciences, FAU Erlangen-Nuremberg, Erlangen, Germany.
The glycocalyx is a dense and dynamic layer of glycosylated species that covers every cell in the human body. It plays crucial roles in various cellular processes in health and disease, such as cancer immune evasion, cancer immune therapy, blastocyst implantation, and functional attenuation of membrane protein diffusion. In addition, alterations in glycocalyx structure may play an important role in ocular surface diseases, e.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
January 2025
Department of Cardiovascular Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China.
Objectives: To investigate the mechanism through which N-acetylneuraminic acid (Neu5Ac) exacerbates hypoxia/reoxygenation (H/R) injury in rat cardiomyocytes (H9C2 cells).
Methods: H9C2 cells were cultured in hypoxia and glucose deprivation for 8 h followed by reoxygenation for different durations to determine the optimal reoxygenation time. Under the optimal H/R protocol, the cells were treated with 0, 5, 10, 20, 30, 40, 50, and 60 mmol/L Neu5Ac during reoxygenation to explore the optimal drug concentration.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!