Immunoliposomes provide a complementary, and in many instances advantageous, drug delivery strategy to antibody-drug conjugates. Their high carrying capacity of 20,000-150,000 drug molecules/liposome, allows for the use of a significantly broader range of moderate-to-high potency small molecule drugs when compared to the comparably few subnanomolar potency maytansinoid- and auristatin-based immunoconjugates. The multivalent display of 5-100 antibody fragments/liposome results in an avidity effect that can make use of even moderate affinity antibodies, as well as a cross-linking of cell surface receptors to induce the internalization required for intracellular drug release and subsequent activity. The underlying liposomal drug must be effectively engineered for long circulating pharmacokinetics and stable in vivo drug retention in order to allow for the drug to be efficiently delivered to the target tissue and take advantage of the site-specific bioavailability provided for by the targeting arm. In this chapter, we describe the rationale for engineering stable immunoliposome-based therapeutics, methods required for preparation of immunoliposomes, as well as for their physicochemical and in vivo characterization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-12-416039-2.00007-0 | DOI Listing |
Expert Opin Drug Deliv
January 2025
Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Moscow, Russia.
Introduction: The pursuit of linear dosage in pharmacy is essential for achieving consistent therapeutic release and enhancing patient compliance. This review provides a comprehensive summary of zero-order drug delivery systems, with a particular focus on reservoir-based systems emanated from different microfabrication technologies.
Areas Covered: The consideration of recent advances in drug delivery systems is given to encompass the key areas including the importance of achieving a constant drug release rate for therapeutic applications.
Pharm Dev Technol
January 2025
Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.
View Article and Find Full Text PDFJ Antimicrob Chemother
January 2025
Research Laboratory, Botswana Harvard Health Partnership, Gaborone, Botswana.
Objectives: We assessed HIV-1 drug resistance profiles among people living with HIV (PLWH) with detectable viral load (VL) and on dolutegravir-based antiretroviral therapy (ART) in Botswana.
Methods: The study utilised available 100 residual HIV-1 VL samples from unique PLWH in Francistown who had viraemia at-least 6 months after initiating ART in Botswana's national ART program from November 2023 to January 2024. Viraemia was categorized as low-level viraemia (LLV) (VL: 200-999 copies/mL) or virologic failure (VF) (VL ≥1000 copies/mL).
Free Radic Res
January 2025
Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects.
View Article and Find Full Text PDFXenobiotica
January 2025
Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
Idiopathic Pulmonary Fibrosis (IPF) is a chronic respiratory disorder for which pirfenidone is the recommended first-line anti-fibrotic treatment. While pirfenidone has demonstrated efficacy in slowing the progression of IPF, its use is associated with several challenges and unresolved issues that impact patient outcomes. Pirfenidone administration can result in gastrointestinal side effects, photosensitivity reactions, and significant drug interactions, particularly in patients with hepatic impairment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!