The chemical composition of persistent organic pollutants (POPs) in the environment is not uniform throughout the world, and these contaminants contain many structurally different lipophilic compounds. In a well-defined study cohort in the Slovak Republic, the POP chemicals present in the peripheral blood of exposed children were chemically analyzed. The chemical analysis data revealed that the relative concentration and profile of structurally different organic pollutants, including polychlorinated biphenyls (PCBs), 2,2'-bis(4-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE), 2,2'-bis(4-chlorophenyl)-1,1,1-trichloro-ethane (p,p'-DDT), hexachlorobenzene (HCB) and β-hexachlorocyclohexane (β-HCH), may vary from individual to individual, even within the same exposure area. These chemicals can be broadly classified into two groups. The first group, the PCB congeners, primarily originated from industrial compounds and their byproducts. The second group of compounds originated from or was commonly used in the agricultural sector (e.g., DDT, HCB). The objective of this study was to examine the effects of the two POP exposure profiles on gene expression. For the study population, we selected pre-pubertal girls (mean age of 46.2±1.4 months) with high POP concentrations in their blood (>75% tile of total POP) and classified them in the high 'PCB' group when the total PCB concentration was significantly higher than the total concentration of other POP components and in the 'Other Than PCB' (OTP) group, when the total PCB concentration was significantly lower than the concentration of the other major POP constituents. A matched control group of girls (<25% tile of total POP) was selected for comparison purpose (n=5 per group). Our aims were to determine whether there were any common effects of high POP exposure at a toxicogenomic level and to investigate how exposure may affect physiological functions of the children in two different exposure scenarios. Global gene expression analysis using a microarray (Affymetrix Gene Chip Human genome U133 Plus 2.0 Array) platform was conducted on the total RNA of peripheral blood mononuclear cells from the girls. The results were analyzed by Partek GS, Louis, MI, which identified twelve genes (ATAD2B, BIVM, CD96, CXorf39, CYTH1 ETNK1, FAM13A, HIRA, INO80B, ODG1, RAD23B, and TSGA14) and two unidentified probe sets, as regulated differentially in both the PCB and OTP groups against the control group. The qRT-PCR method was used to validate the microarray results. The Ingenuity Pathway Analysis (IPA) software package identified the possible molecular impairments and disease risks associated with each gene set. Connective tissue disorders, genetic disorders, skeletal muscular disorders and neurological diseases were associated with the 12 common genes. The data therefore identified the potential molecular effects of POP exposure on a genomic level. This report underscores the importance of further study to validate the results in a random population and to evaluate the use of the identified genes as biomarkers for POP exposure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3259908 | PMC |
http://dx.doi.org/10.1016/j.envint.2011.09.003 | DOI Listing |
Environ Sci Technol
January 2025
Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4.
Despite benzotriazole UV stabilizers (BT-UVs) being widely used since the 1960s, few empirical data on their atmospheric presence exist. UV-328 was added to the Stockholm Convention on Persistent Organic Pollutants, based in part on model calculations indicating atmospheric long-range transport potential. We investigated the atmospheric occurrence of BT-UVs at multiple sites that differ greatly in their proximity to potential sources.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Syngenta Ltd, Jealott's Hill International Research Centre, Warfield, Bracknell, RG42 6EY, UK.
Brazilian soils have distinctive characteristics to European and North American soils which are typically used to investigate pesticide fate. This study aimed to compare soil-water partition coefficient (K), reversibility of adsorption and degradation half-life (DT) of 5 pesticides covering a wide range of physico-chemical properties in contrasting Brazilian soils (Argissolo, Gleissolo, Latossolo and Neossolo) and a temperate (UK) alfisol soil, and to study their relationship with soil OM, clay and expandable clay content, CEC and pH. In addition, we used a novel laboratory test to evaluate sorption reversibility, the 3-Phase Assay (3PA).
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
In recent years, heightened concern has emerged regarding the pervasive presence of microplastics in the environment, particularly in aquatic ecosystems. This concern has prompted extensive scientific inquiry into microplastics' ecological and physiological implications, including threats to biodiversity. The robust adsorption capacity of microplastic surfaces facilitates their widespread distribution throughout aquatic ecosystems, acting also as carriers of organic pollutants.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Norwegian University of Life Sciences, Department of Building and Environmental Technology, P.O. Box 5003, 1430 Ås, Norway.
The need for stringent phosphorus removal from domestic wastewater is increasing to mitigate eutrophication, while efficient phosphate reuse is critical due to the global phosphate crisis. Combining aluminum sulfate (ALS) with high molecular weight organic polymers achieved 95-99% removal of particles, turbidity, and phosphates, reducing ALS usage by 40%. We propose mechanisms to explain the enhanced treatment efficiency.
View Article and Find Full Text PDFWater Sci Technol
January 2025
China Construction Fifth Engineering Division Co., Ltd, Changsha, Hunan 410004, China.
Road runoff underwent treatment using a filter filled with sludge from drinking water treatment plants to assess its capacity for removing dissolved organic matter (DOM). This evaluation utilized resin fractionation, gel permeation chromatography, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-Visible spectroscopy. The filter demonstrated enhanced efficiency in removing dissolved organic carbon, achieving removal rates between 70 and 80%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!