The minichromosome maintenance (MCM) proteins are thought to function as the replicative helicases in archaea and eukarya. In this work we determined the solution structure of the N-terminal portion of the MCM complex from the archaeon Methanothermobacter thermautotrophicus (N-mtMCM) in the presence and absence of DNA using small-angle neutron scattering (SANS). N-mtMCM is a multimeric protein complex that consists of 12 monomers, each of which contains three distinct domains and two unstructured regions. Using an all-atom approach incorporating modern force field and Monte Carlo methods to allow the unstructured regions of each monomer to be varied independently, we generated an ensemble of biologically relevant structures for the complex. An examination of the subsets of structures that were most consistent with the SANS data revealed that large movements between the three domains of N-mtMCM can occur in solution. Furthermore, changes in the SANS curves upon DNA binding could be correlated to the motion of a particular N-mtMCM domain. These results provide structural support to the previously reported biochemical observations that large domain motions are required for the activation of the MCM helicase in archaea and eukarya. The methods developed here for N-mtMCM solution structure modeling should be suitable for other large protein complexes with unstructured flexible regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244067 | PMC |
http://dx.doi.org/10.1016/j.bpj.2011.11.006 | DOI Listing |
Materials (Basel)
December 2024
Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA.
Advanced batteries require advanced characterization techniques, and neutron scattering is one of the most powerful experimental methods available for studying next-generation battery materials. Neutron scattering offers a non-destructive method to probe the complex structural and chemical processes occurring in batteries during operation in truly in situ/in operando measurements with a high sensitivity to battery-relevant elements such as lithium. Neutrons have energies comparable to the energies of excitations in materials and wavelengths comparable to atomic distances in the solid state, thus giving access to study structural and dynamical properties of materials on an atomic scale.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India.
Nat Commun
December 2024
Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada.
Methods to prepare and characterize neutron helical waves carrying orbital angular momentum (OAM) were recently demonstrated at small-angle neutron scattering (SANS) facilities. These methods enable access to the neutron orbital degree of freedom which provides new avenues of exploration in fundamental science experiments as well as in material characterization applications. However, it remains a challenge to recover phase profiles from SANS measurements.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Institute for Frontier Materials, Deakin University, Geelong VIC 3216, Australia. Electronic address:
Hypothesis: Optimizing interfacial positioning of crosslinkers within a reactive self-assembled hexagonal lyotropic liquid crystals (HLLC) system could assist in retaining the hexagonal structure during polymerization and thereby improving water filtration performances of the as-synthesized nanofiltration membranes.
Experiments: The positioning of the hydrophilic crosslinker, poly (ethylene glycol) diacrylate (PEGDA), within the reactive HLLC system was systematically investigated using H and C solid nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. The structural variation and water filtration performances of these HLLC systems with/without crosslinkers after polymerization were further studied using grazing incidence SAXS (GISAXS) and crossflow filtration tests, respectively.
J Colloid Interface Sci
December 2024
School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK.
Hypothesis: Nanoscale characterisation of the self-associated species formed by amphiphilic pharmaceuticals in aqueous solution carries relevance across their entire journey from development through to manufacture - relevant, therefore, not only as regards formulation of the drug products as medicines, but also potentially relevant to their bioavailability, activity, and clinical side effects. Such knowledge and understanding, however, can only be fully secured by applying a range of experimental and theoretical methodologies.
Experiments: Herein, we apply a synergistic combination of solubility, surface tension, SANS, NMR and UV spectroscopic studies, together with MD simulation and QM calculations, to investigate the meso-structures of propranolol hydrochloride aggregates in bulk aqueous solutions, at concentrations spanning 2.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!