Plant litter production and decomposition are two important processes in forest ecosystems, since they provide the main organic matter input to soil and regulate nutrient cycling. With the aim to study these processes, litterfall, standing litter and nutrient return were studied for three years in an oak forest (Quercus humboldtii), pine (Pinus patula) and cypress (Cupressus lusitanica) plantations, located in highlands of the Central Cordillera of Colombia. Evaluation methods included: fine litter collection at fortnightly intervals using litter traps; the litter layer samples at the end of each sampling year and chemical analyses of both litterfall and standing litter. Fine litter fall observed was similar in oak forest (7.5 Mg ha/y) and in pine (7.8 Mg ha/y), but very low in cypress (3.5 Mg ha/y). Litter standing was 1.76, 1.73 and 1.3 Mg ha/y in oak, pine and cypress, respectively. The mean residence time of the standing litter was of 3.3 years for cypress, 2.1 years for pine and 1.8 years for oak forests. In contrast, the total amount of retained elements (N, P, S, Ca, Mg, K, Cu, Fe, Mn and Zn) in the standing litter was higher in pine (115 kg/ha), followed by oak (78 kg/ha) and cypress (24 kg/ha). Oak forests showed the lowest mean residence time of nutrients and the highest nutrients return to the soil as a consequence of a faster decomposition. Thus, a higher nutrient supply to soils from oaks than from tree plantations, seems to be an ecological advantage for recovering and maintaining the main ecosystem functioning features, which needs to be taken into account in restoration programs in this highly degraded Andean mountains.
Download full-text PDF |
Source |
---|
Mar Pollut Bull
December 2024
The Swire Institute of Marine Science, Hong Kong, Hong Kong Special Administrative Region; Department of Biology, University of Florence, Sesto Fiorentino, Italy.
Mangroves are recognized as a sink for plastic and other anthropogenic marine debris (AMD). The accumulation rates of AMD within these ecosystems, however, have not yet been assessed anywhere in the world. Here, we investigated the standing stock and accumulation rate of AMD at four of the most polluted mangroves in Hong Kong over one year, focussing on its ecological impact on the diversity and abundance of vegetation and benthic macrofauna.
View Article and Find Full Text PDFFront Microbiol
November 2024
State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.
Introduction: Many studies have identified stand age and soil microbial communities as key factors influencing soil respiration (Rs). However, the effects of stand age on Rs and soil microbial communities throughout the growth cycle of poplar ( cv.'I-214') plantations remain unclear.
View Article and Find Full Text PDFExp Appl Acarol
December 2024
Department of Game Management and Forest Protection, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, 71D Wojska Polskiego Str., 60-625, Poznan, Poland.
Post-agricultural land differs from typical forest land in physical, chemical and biological features. In addition, the environment of this land type is determined, among other things, by the introduced tree species. These differences may be revealed by the biodiversity and abundance of the soil fauna.
View Article and Find Full Text PDFYoung tropical secondary forests play an important role in the local and global carbon cycles because of their large area and rapid biomass accumulation rates. This study examines how environmental conditions and forest attributes shape biomass compartments and the productivity of young tropical secondary forests. We compared 36 young secondary forest stands that differed in the time since agricultural land abandonment (2.
View Article and Find Full Text PDFPoult Sci
November 2024
Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!