Diversity of galling insects in Styrax pohlii (Styracaceae): edge effect and use as bioindicators.

Rev Biol Trop

Pós-Graduação em Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, 74001-970 Goiânia, Goiás, CP 131, Brazil.

Published: December 2011

Impacts of forest fragmentation and edge effect on plant-herbivores interactions are relatively unknown, and the relationships between galling insects and their host plants are very susceptible to environmental variations. The goal of our study was to test the edge effect hypothesis for galling insects associated with Styrax pohlii (Styracaceae) host plant. Samplings were conducted at a fragment of semi-deciduous forest in Goiânia, Goiás, Brazil. Thirty host plant individuals (15 at fragment edge and 15 in its interior) were sampled in July of 2007; in each plant, 10 apical branches were collected at the top, middle and bottom crown levels. Our results supported the prediction of greater richness of gall morphotypes in the edge habitat compared with remnant interior. In a similar way, gall abundance and frequency of attacked leaves were also greater in the fragment edge. These findings consequently suggest a positive response of galling insect diversity to edge effect; in the Saint-Hilaire forest, this effect probably operates through the changes in microclimatic conditions of edge habitats, which results in an increased hygrothermal stress, a determinant factor to distribution patterns of galling insects. We also concluded that these organisms could be employed as biological indicators (i) because of their host-specificity, (ii) they are sensitive to changes in plant quality, and (iii) present dissimilar and specific responses to local variation in habitat conditions.

Download full-text PDF

Source
http://dx.doi.org/10.15517/rbt.v59i4.3422DOI Listing

Publication Analysis

Top Keywords

galling insects
16
styrax pohlii
8
pohlii styracaceae
8
edge
8
host plant
8
fragment edge
8
diversity galling
4
insects
4
insects styrax
4
styracaceae edge
4

Similar Publications

Conflicting Dynamics of Galling and Pollination: (Hymenoptera, Eulophidae), a Specialized Parasitic Galler in Pistillate Flowers of (Araceae).

Plants (Basel)

December 2024

Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-130, SP, Brazil.

In the complex dynamics of plant-insect interactions, the specialized galling of reproductive structures presents unique evolutionary adaptations. This study investigates the parasitic relationship between (Hymenoptera, Eulophidae), an ovary-galling wasp, and the inflorescences of (Araceae). We employed field experiments and histological analyses to investigate the mechanisms driving this interaction.

View Article and Find Full Text PDF

Soil application of dazomet combined with 1,3-dichloropropene against soilborne pests for tomato production.

Sci Rep

December 2024

State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.

There is a growing problem in China, whereby tomato replant disease is being affected by Fusarium spp., Meloidogyne spp., and Phytophthora spp.

View Article and Find Full Text PDF

Gallophilous theory of cyclical parthenogenesis in aphids (Homoptera, Aphidinea).

Comp Cytogenet

December 2024

Zoological Institute of the Russian Academy of Sciences, Universitetskaya Emb. 1, Saint Petersburg, 199034, Russia Zoological Institute of the Russian Academy of Sciences Saint Petersburg Russia.

The paper elaborates theoretical basis of the origin of aphid cyclical parthenogenesis in view of the original life of these insects in strobiloid galls on spp. The period of gall opening is greatly extended in time, which prevents normal panmixia and creates a selective advantage for parthenogenetic reproduction. Migration of aphids to secondary host plants, on which closed galls never form, parthenogenetic reproduction on these plants, and the subsequent simultaneous return of "remigrants" to the main host plant make it possible to synchronize the development of the bisexual generation and achieve mass panmixia at the end of the life cycle only; it coincides with the end of summer growth shoots or the autumn end of the vegetation period as a whole.

View Article and Find Full Text PDF

The evolution of diverse and novel morphological traits is poorly understood, especially how symbiotic interactions can drive these adaptations. The extreme diversity of external traits in insect-induced galls is currently explained by the Enemy Hypothesis, in which these traits have selective advantage in deterring parasitism. While previous tests of this hypothesis used only taxonomic identity, we argue that ecologically functional traits of enemies (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!