Recent findings in the neurophysiology of language production have provided a detailed description of the brain network underlying this behavior, as well as some indications about the timing of operations. Despite their invaluable utility, these data generally suffer from limitations either in terms of temporal resolution, or in terms of spatial localization. In addition, studying the neural basis of speech is complicated by the presence of articulation artifacts such as electro-myographic activity that interferes with the neural signal. These difficulties are virtually absent in a powerful albeit much less frequent methodology, namely the recording of intra-cranial brain activity (intra-cranial electroencephalography). Such recordings are only possible under very specific clinical circumstances requiring functional mapping before brain surgery, most notably in patients that suffer from pharmaco-resistant epilepsy. Here we review the research conducted with this methodology in the field of language production, with explicit consideration of its advantages and drawbacks. The available evidence is shown to be diverse, both in terms of the tasks and the cognitive processes tested and in terms of the brain localizations being studied. Still, the review provides valuable information for characterizing the dynamics of the neural events occurring in the language production network. Following modality specific activities (in auditory or visual cortices), there is a convergence of activity in superior temporal sulcus, which is a plausible neural correlate of phonological encoding processes. Later, between 500 and 800 ms, inferior frontal gyrus (around Broca's area) is involved. Peri-rolandic areas are recruited in the two modalities relatively early (200-500 ms window), suggesting a very early involvement of (pre-) motor processes. We discuss how some of these findings may be at odds with conclusions drawn from available meta-analysis of language production studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246222 | PMC |
http://dx.doi.org/10.3389/fpsyg.2011.00375 | DOI Listing |
Biomed Microdevices
January 2025
Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Suwannabhumi Canal Rd, Bang Pla, Bang Phli District, Samut Prakan, 10540, Thailand.
Microfluidic chips often face challenges related to the formation and accumulation of air bubbles, which can hinder their performance. This study investigated a bubble trapping mechanism integrated into microfluidic chip to address this issue. Microfluidic chip design includes a high shear stress section of fluid flow that can generate up to 2.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
January 2025
Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, United States.
Background: Investigators conducting clinical trials have an ethical, scientific, and regulatory obligation to protect the safety of trial participants. Traditionally, safety monitoring includes manual review and coding of adverse event data by expert clinicians.
Objectives: Our study explores the use of natural language processing (NLP) and artificial intelligence (AI) methods to streamline and standardize clinician coding of adverse event data in Alzheimer's disease (AD) clinical trials.
JMIR Med Inform
January 2025
Department of Medical Informatics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
Background: The field of digital health solutions (DHS) has grown tremendously over the past years. DHS include tools for self-management, which support individuals to take charge of their own health. The usability of DHS, as experienced by patients, is pivotal to adoption.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India.
Plants and microorganisms coexist within complex ecosystems, significantly influencing agricultural productivity. Depending on the interaction between the plant and microbes, this interaction can either help or harm plant health. Microbes interact with plants by secreting proteins that influence plant cells, producing bioactive compounds like antibiotics or toxins, and releasing molecules such as N-acyl homoserine lactones to coordinate their behaviour.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.
Inflammatory processes have been implicated in the pathophysiology of depression. In human studies, inflammation has been shown to act as a critical disease modifier, promoting susceptibility to depression and modulating specific endophenotypes of depression. However, there is scant documentation of how inflammatory processes are associated with neural activity in patients with depression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!