Passive motion paradigm: an alternative to optimal control.

Front Neurorobot

Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia Genoa, Italy.

Published: October 2012

AI Article Synopsis

  • Optimal Control Theory (OCT) has become a key method in studying how the brain controls movement and motor cognition, addressing challenges like the "degrees of freedom" problem in both behavioral neuroscience and humanoid robotics.
  • The authors present an alternative approach called the Passive Motion Paradigm (PMP), which emphasizes internal simulations and the body’s biomechanical dynamics rather than complex calculations to resolve motor tasks.
  • They suggest that this new perspective, informed by advancements in neuroscience and robotics, can enhance our understanding of motor cognition, moving beyond the traditional engineering-focused OCT framework.

Article Abstract

IN THE LAST YEARS, OPTIMAL CONTROL THEORY (OCT) HAS EMERGED AS THE LEADING APPROACH FOR INVESTIGATING NEURAL CONTROL OF MOVEMENT AND MOTOR COGNITION FOR TWO COMPLEMENTARY RESEARCH LINES: behavioral neuroscience and humanoid robotics. In both cases, there are general problems that need to be addressed, such as the "degrees of freedom (DoFs) problem," the common core of production, observation, reasoning, and learning of "actions." OCT, directly derived from engineering design techniques of control systems quantifies task goals as "cost functions" and uses the sophisticated formal tools of optimal control to obtain desired behavior (and predictions). We propose an alternative "softer" approach passive motion paradigm (PMP) that we believe is closer to the biomechanics and cybernetics of action. The basic idea is that actions (overt as well as covert) are the consequences of an internal simulation process that "animates" the body schema with the attractor dynamics of force fields induced by the goal and task-specific constraints. This internal simulation offers the brain a way to dynamically link motor redundancy with task-oriented constraints "at runtime," hence solving the "DoFs problem" without explicit kinematic inversion and cost function computation. We argue that the function of such computational machinery is not only restricted to shaping motor output during action execution but also to provide the self with information on the feasibility, consequence, understanding and meaning of "potential actions." In this sense, taking into account recent developments in neuroscience (motor imagery, simulation theory of covert actions, mirror neuron system) and in embodied robotics, PMP offers a novel framework for understanding motor cognition that goes beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the same time a review of the PMP rationale, as a computational theory, and a perspective presentation of how to develop it for designing better cognitive architectures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246361PMC
http://dx.doi.org/10.3389/fnbot.2011.00004DOI Listing

Publication Analysis

Top Keywords

optimal control
12
passive motion
8
motion paradigm
8
motor cognition
8
internal simulation
8
control
6
motor
5
paradigm alternative
4
alternative optimal
4
control years
4

Similar Publications

Individual differences in working memory predict a wide range of cognitive abilities. However, little research has been done on whether working memory continues to predict task performance after repetitive learning. Here, we tested whether working memory ability continued to predict long-term memory (LTM) performance for picture sequences even after participants showed massive learning.

View Article and Find Full Text PDF

The acid mine drainage (AMD) is characterized by its highly acidic nature and elevated concentrations of metal ions, thereby exerting significant impacts on both human health and the environment. This study employed a dispersed alkaline substrate (DAS) consisting of thermal activation magnesite and pine shavings for the treatment of AMD. The investigation focused on determining the optimal thermal activation conditions of magnesite, evaluating the effectiveness of the DAS in regulating acidity and removing metal ions from AMD, identifying critical factors influencing treatment efficiency, and conducting toxicity assessment on the effluent.

View Article and Find Full Text PDF

Introduction: Although COVID-19 vaccines have been recommended for children and adolescents since 2021, suboptimal vaccination uptake has been documented. No previous systematic review/meta-analysis (SRMA) investigated parents' willingness to administer COVID-19 vaccines for their children in Saudi Arabia. Accordingly, this SRMA aimed to estimate parents' willingness to immunize their children with COVID-19 vaccines in Saudi Arabia and to identify reasons and determinants influencing parents' decisions.

View Article and Find Full Text PDF

Background: Leishmaniasis is a health problem in many regions with poor health and poor life resources. According to the World Health Organization (WHO), an estimated 700,000-1 million new cases arise annually. Effective control of sand fly vector populations is crucial for reducing the transmission of this disease.

View Article and Find Full Text PDF

Modernizing power systems into smart grids has introduced numerous benefits, including enhanced efficiency, reliability, and integration of renewable energy sources. However, this advancement has also increased vulnerability to cyber threats, particularly False Data Injection Attacks (FDIAs). Traditional Intrusion Detection Systems (IDS) often fall short in identifying sophisticated FDIAs due to their reliance on predefined rules and signatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!