A design of a high-speed and high-efficiency capsule endoscopy system.

IEEE Trans Biomed Eng

Applied Electromagnetics Laboratory, School of Electrical Engineering, Seoul National University, Seoul, Korea.

Published: April 2012

This paper presents a high-speed and high-efficiency capsule endoscopy system. Both a transmitter and a receiver were optimized for its application through an analysis of the human body channel. ON-OFF keying modulation is utilized to achieve low power consumption of the in-body transmitter. A low drop output regulator is adopted to prevent performance degradation in the event of a voltage drop in the battery. The receiver adopts superheterodyne structure to obtain high sensitivity, considering the link budget from the previous analysis. The receiver and transmitter were fabricated using the CMOS 0.13-μm process. The output power of the transmitter is -1.6 dB·m and its efficiency is 27.7%. The minimum sensitivity of the receiver is -80 dB·m at a bit error ratio (BER) of 3 × 10 (-6). An outer wall loop antenna is adopted for the capsule system to ensure a small size. The integrated system is evaluated using a liquid human phantom and a living pig, resulting in clean captured images.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2011.2182050DOI Listing

Publication Analysis

Top Keywords

high-speed high-efficiency
8
high-efficiency capsule
8
capsule endoscopy
8
endoscopy system
8
design high-speed
4
system
4
system paper
4
paper presents
4
presents high-speed
4
transmitter
4

Similar Publications

High-performance infrared light sources have significantly influenced the fields of photonics and optoelectronics. However, achieving infrared light emission with low energy consumption, high brightness, and rapid response remains a huge challenge. Single-walled carbon nanotubes (SWCNTs) could be an important candidate for infrared light emitters because of their superior electron mobility and phonon transport efficiency.

View Article and Find Full Text PDF

Research on the movement pattern and kinematic model of the hindlegs of the water boatman.

Bioinspir Biomim

December 2024

Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, 17923, Jingshi road, Jinan, 250100, CHINA.

The special hindleg structure and swimming setae of a water boatman give it a high degree of maneuverability, which plays an important role in swimming. This paper used a high-speed photography platform to extract key points from videos, obtaining the forward and turning movement patterns of the water boatman's hindlegs, as well as the transformation patterns of the setae. A Fourier series was used to establish the movement models of each hindleg joint, and a kinematic model of the hindlegs was established to study the continuous movement characteristics of the hindlegs.

View Article and Find Full Text PDF

Erbium-doped thin-film lithium niobate (TFLN) lasers have attracted great interest in recent years due to their compatibility with high-speed electro-optic (EO) modulation on the same platform. In this work, high-efficiency single-mode erbium-doped microring lasers with milliwatt output powers were demonstrated. Monolithic lithium niobate microring resonators using pulley-waveguide-coupling were fabricated by the photolithography assisted chemo-mechanical etching (PLACE) technique.

View Article and Find Full Text PDF

Mechanism of removal of Sb from printing and dyeing wastewater by a novel titanium-manganese binary oxide.

Environ Res

December 2024

State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.

Antimony (Sb) is a toxic heavy metal that endangers both the environment and human health. In response to the growing need for efficient Sb removal from printing and dyeing wastewater (PDW), this study introduces a novel titanium-manganese binary oxide adsorbent (T2M1BO) synthesized via precipitation. Experimental results show that T2M1BO exhibited higher absorption efficiency for Sb(III) compared to Sb(V), with maximum adsorption capacities recorded at 323.

View Article and Find Full Text PDF

Manta rays use wing-like pectoral fins for intriguing oscillatory swimming. It provides rich inspiration for designing potentially fast, efficient, and maneuverable soft swimming robots, which, however, have yet to be realized. It remains a grand challenge to combine fast speed, high efficiency, and high maneuverability in a single soft swimmer while using simple actuation and control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!