Background: Major depressive disorder (MDD), panic disorder, and social anxiety disorder are among the most prevalent and frequently co-occurring psychiatric disorders in adults and may be characterized by a common deficiency in processing of emotional information.
Methods: We used functional magnetic resonance imaging during the performance of an emotional word encoding and recognition paradigm in patients with MDD (n = 51), comorbid MDD and anxiety (n = 59), panic disorder and/or social anxiety disorder without comorbid MDD (n = 56), and control subjects (n = 49). In addition, we studied effects of illness severity, regional brain volume, and antidepressant use.
Results: Patients with MDD, prevalent anxiety disorders, or both showed a common hyporesponse in the right hippocampus during positive (>neutral) word encoding compared with control subjects. During negative encoding, increased insular activation was observed in both depressed groups (MDD and MDD + anxiety), whereas increased amygdala and anterior cingulate cortex activation during positive word encoding were observed as depressive state-dependent effects in MDD only. During recognition, anxiety patients showed increased inferior frontal gyrus activation. Overall, effects were unaffected by medication use and regional brain volume.
Conclusions: Hippocampal blunting during positive word encoding is a generic effect in depression and anxiety disorders, which may constitute a common vulnerability factor. Increased insular and amygdalar involvement during negative word encoding may underlie heightened experience of, and an inability to disengage from, negative emotions in depressive disorders. Our results emphasize a common neurobiological deficiency in both MDD and anxiety disorders, which may mark a general insensitiveness to positive information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopsych.2011.11.016 | DOI Listing |
J Cogn Neurosci
January 2025
National Central University, Taoyuan City, Taiwan.
Pitch variation of the fundamental frequency (F0) is critical to speech understanding, especially in noisy environments. Degrading the F0 contour reduces behaviorally measured speech intelligibility, posing greater challenges for tonal languages like Mandarin Chinese where the F0 pattern determines semantic meaning. However, neural tracking of Mandarin speech with degraded F0 information in noisy environments remains unclear.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Computer Science, Shaanxi Normal University, Xi'an 710062, China.
Music generation by AI algorithms like Transformer is currently a research hotspot. Existing methods often suffer from issues related to coherence and high computational costs. To address these problems, we propose a novel Transformer-based model that incorporates a gate recurrent unit with root mean square norm restriction (TARREAN).
View Article and Find Full Text PDFBr J Dev Psychol
January 2025
Department of Psychology, Trinity University, San Antonio, Texas, USA.
This study investigates whether the context in which a word is learnt affects noun and verb learning. There is mixed evidence in studies of noun learning, and no studies of background perceptual context in verb learning. Two-, three-, and four-year-olds (n = 162) saw a novel object moved in a novel way while hearing four novel words, either nouns or verbs.
View Article and Find Full Text PDFElife
January 2025
State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University & IDG/McGovern Institute for Brain Research, Beijing, China.
Speech comprehension involves the dynamic interplay of multiple cognitive processes, from basic sound perception, to linguistic encoding, and finally to complex semantic-conceptual interpretations. How the brain handles the diverse streams of information processing remains poorly understood. Applying Hidden Markov Modeling to fMRI data obtained during spoken narrative comprehension, we reveal that the whole brain networks predominantly oscillate within a tripartite latent state space.
View Article and Find Full Text PDFBrain Stimul
January 2025
Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland; Global Brain Health Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland. Electronic address:
Background: Attention plays a central role in learning and memory processes. Prior research has demonstrated how goal-directed attention influences successful performance on both attention and working memory tasks. However, an important question remains about whether long-term memory outcomes can be reliably enhanced by targeting attention processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!