Insights into the mechanistic dichotomy of the protein farnesyltransferase peptide substrates CVIM and CVLS.

J Am Chem Soc

Department of Chemistry and the Quantum Theory Project, 2328 New Physics Building, P.O. Box 118435, University of Florida, Gainesville, Florida 32611-8435, USA.

Published: January 2012

Protein farnesyltransferase (FTase) catalyzes farnesylation of a variety of peptide substrates. (3)H α-secondary kinetic isotope effect (α-SKIE) measurements of two peptide substrates, CVIM and CVLS, are significantly different and have been proposed to reflect a rate-limiting S(N)2-like transition state with dissociative characteristics for CVIM, while, due to the absence of an isotope effect, CVLS was proposed to have a rate-limiting peptide conformational change. Potential of mean force quantum mechanical/molecular mechanical studies coupled with umbrella sampling techniques were performed to further probe this mechanistic dichotomy. We observe the experimentally proposed transition state (TS) for CVIM but find that CVLS has a symmetric S(N)2 TS, which is also consistent with the absence of a (3)H α-SKIE. These calculations demonstrate facile substrate-dependent alterations in the transition state structure catalyzed by FTase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277741PMC
http://dx.doi.org/10.1021/ja209650hDOI Listing

Publication Analysis

Top Keywords

peptide substrates
12
transition state
12
mechanistic dichotomy
8
protein farnesyltransferase
8
substrates cvim
8
cvim cvls
8
cvls proposed
8
insights mechanistic
4
dichotomy protein
4
peptide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!