In this paper, we present the development of a data glove system based on fingertip tracking techniques. To track the fingertip position and orientation, a sensor module and two generator coils are attached on the fingertip and metacarpal of the corresponding finger. By tracking the fingertip, object manipulation tasks in a virtual environment or teleoperation system can be carried out more precisely, because fingertips are the foremost areas that reach the surface of an object in most of grasping processes. To calculate the bending angles of a finger, we also propose a method of constructing the shape of the finger. Since the coils are installed on the fingertips and metacarpals, there is no contact point between the sensors and finger joints. Hence, the shape of the sensors does not change as the fingers are bending, and both the quality of measurement and the lifetime of the sensors will not decrease in time. For the convenience of using this glove, a simple and efficient calibration process consisting of only one calibration gesture is also provided, so that all required parameters can be determined automatically. So far, the experimental results of the sensors performing linear movement and bending angle measurements are very satisfactory. It reveals that our data glove is available for a man-machine interface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244006 | PMC |
http://dx.doi.org/10.3390/s100201119 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!