Anergic CD8+ T lymphocytes have impaired NF-κB activation with defects in p65 phosphorylation and acetylation.

J Immunol

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.

Published: February 2012

Because of the cytotoxic potential of CD8(+) T cells, maintenance of CD8(+) peripheral tolerance is extremely important. A major peripheral tolerance mechanism is the induction of anergy, a refractory state in which proliferation and IL-2 production are inhibited. We used a TCR transgenic mouse model to investigate the signaling defects in CD8(+) T cells rendered anergic in vivo. In addition to a previously reported alteration in calcium/NFAT signaling, we also found a defect in NF-κB-mediated gene transcription. This was not due to blockade of early NF-κB activation events, including IκB degradation and NF-κB nuclear translocation, as these occurred normally in tolerant T cells. However, we discovered that anergic cells failed to phosphorylate the NF-κB p65 subunit at Ser(311) and also failed to acetylate p65 at Lys(310). Both of these modifications have been implicated as critical for NF-κB transactivation capacity, and thus, our results suggest that defects in key phosphorylation and acetylation events are important for the inhibition of NF-κB activity (and subsequent T cell function) in anergic CD8(+) T cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262885PMC
http://dx.doi.org/10.4049/jimmunol.1100793DOI Listing

Publication Analysis

Top Keywords

cd8+ cells
12
anergic cd8+
8
nf-κb activation
8
phosphorylation acetylation
8
peripheral tolerance
8
nf-κb
6
cells
5
anergic
4
cd8+ lymphocytes
4
lymphocytes impaired
4

Similar Publications

Background: Oncolytic viruses (OVs) are promising immunotherapeutics to treat immunologically cold tumors. However, research on the mechanism of action of OVs in humans and clinically relevant biomarkers is still sparse. To induce strong T-cell responses against solid tumors, TILT-123 (Ad5/3-E2F-d24-hTNFa-IRES-hIL2, igrelimogene litadenorepvec) was developed.

View Article and Find Full Text PDF

Targeted editing of CCL5 with CRISPR-Cas9 nanoparticles enhances breast cancer immunotherapy.

Apoptosis

January 2025

Department of Breast Cancer Surgery, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, Jiangxi, 330029, China.

Breast cancer remains one of the leading causes of cancer-related mortality among women worldwide. Immunotherapy, a promising therapeutic approach, often faces challenges due to the immunosuppressive tumor microenvironment. This study explores the innovative use of CRISPR-Cas9 technology in conjunction with FCPCV nanoparticles to target and edit the C-C Motif Chemokine Ligand 5 (CCL5) gene, aiming to improve the efficacy of breast cancer immunotherapy.

View Article and Find Full Text PDF

Background: Osteosarcoma is the most common malignant bone tumour with limited treatment options and poor outcomes in advanced metastatic cases. Current immunotherapies show limited efficacy, highlighting the need for novel therapeutic approaches. Systemic immune activation by Toll-like receptor 4 (TLR4) immunostimulants has shown great promise; however, current TLR4 agonists' toxicity hinders this systemic approach in patients with osteosarcoma.

View Article and Find Full Text PDF

Immunity suffers a function deficit during aging, and the incidence of cancer is increased in the elderly. However, most cancer models employ young mice, which are poorly representative of adult cancer patients. We have previously reported that Triple-Therapy (TT), involving antigen-presenting-cell activation by vinorelbine and generation of TCF1-stem-cell-like T cells (scTs) by cyclophosphamide significantly improved anti-PD-1 efficacy in anti-PD1-resistant models like Triple-Negative Breast Cancer (TNBC) and Non-Hodgkin's Lymphoma (NHL), due to T-cell-mediated tumor killing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!