Ragweed and mugwort are closely related weeds that represent the major cause of pollen allergy in late summer. Concomitant sensitization and clinical cross-reactivity frequently occur in subjects who are coexposed to both pollen species, and have implications for diagnosis and specific immunotherapy. Molecules involved in this cross-reactivity might be Amb a 1, the major ragweed pollen allergen, and Art v 6, a highly homologous allergen from mugwort. Therefore, we investigated the IgE and T cell response to Art v 6 of 60 weed pollen-allergic patients and assessed its immunological cross-reactivity with Amb a 1. Results of ELISA inhibition experiments suggested that both allergens are largely cross-reactive, but Amb a 1 possesses more IgE epitopes than Art v 6. In patients with IgE to both allergens, Amb a 1-induced T cell lines and clones responded weakly to Art v 6. Moreover, Art v 6-induced T cell lines responded stronger to Amb a 1. T cell epitope mapping of Art v 6 revealed that it contains only a few cross-reactive epitopes, which is opposed to the multiple T cell-activating regions present in Amb a 1. In summary, Amb a 1 can elicit more diverse allergen-specific IgE and T cell responses than Art v 6 and dominates the cross-reactivity with its homolog. Nevertheless, Art v 6 can act as a primary sensitizing allergen in areas with high mugwort pollen exposure, and consequently may facilitate sensitization to Amb a 1 by epitope cross-recognition of T and B cells.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1102445DOI Listing

Publication Analysis

Top Keywords

cross-reactivity amb
12
amb
9
art
9
amb major
8
major ragweed
8
ragweed pollen
8
pollen allergen
8
allergen mugwort
8
homolog art
8
ige cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!