Exploitation of host signaling pathways by microbial quorum sensing signals.

Curr Opin Microbiol

Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.

Published: April 2012

Environmental and commensal microbes that live within, on and around us have an enormous impact on human health. Recent progress in studies of prokaryotic interplay as well as host-bacteria interactions suggests that secreted microbial products, including quorum sensing signals (QSS), are important mediators of these intrakingdom and interkingdom relations. Reports have assigned QSS diverse and sometimes seemingly contradictory effects on mammalian cell physiology ranging from either blunting of the immune response or exerting pro-inflammatory activities to inducing cellular stress pathways and ultimately apoptosis. Thus, it is still unclear whether microbes utilize QSS to establish and maintain infections via modulation of host signaling pathways or if the eukaryotic host uses the conserved microbial QSS structures as molecular danger beacons to detect and fight infections. Along the same lines exactly how and under what circumstances QSS are detected by host cells remains a mystery, especially considering the distinct chemical properties of the QSS classes with some being small enough to passively diffuse across membranes while others most likely require extracellular recognition mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mib.2011.12.003DOI Listing

Publication Analysis

Top Keywords

host signaling
8
signaling pathways
8
quorum sensing
8
sensing signals
8
qss
6
exploitation host
4
pathways microbial
4
microbial quorum
4
signals environmental
4
environmental commensal
4

Similar Publications

The developmental lipidome of Nippostrongylus brasiliensis.

Parasit Vectors

January 2025

Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.

Background: Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling.

View Article and Find Full Text PDF

In our research, we performed temporal transcriptomic profiling of host cells infected with Equid alphaherpesvirus 1 (EHV-1) by utilizing direct cDNA sequencing based on nanopore MinION technology. The sequencing reads were harnessed for transcript quantification at various time points. Viral infection-induced differential gene expression was identified through the edgeR package.

View Article and Find Full Text PDF

Intercellular communication is fundamental to multicellular life and a core determinant of outcomes during viral infection, where the common goals of virus and host for persistence and replication are generally at odds. Hosts rely on encoded innate and adaptive immune responses to detect and clear viral pathogens, while viruses can exploit or disrupt these pathways and other intercellular communication processes to enhance their spread and promote pathogenesis. While virus-induced signaling can result in systemic changes to the host, striking alterations are observed within the cellular microenvironment directly surrounding a site of infection, termed the virus microenvironment (VME).

View Article and Find Full Text PDF

Ubiquitination-dependent degradation of DHX36 mediated by porcine circovirus type 3 capsid protein.

Virology

January 2025

College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. Electronic address:

Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes porcine dermatitis, and reproductive failure. PCV3 Cap interacts with DExD/H-box helicase 36 (DHX36), a protein that functions primarily through regulating interferon (IFN)-β production. However, how the interaction between DHX36 and PCV3 Cap regulates viral replication remains unknown.

View Article and Find Full Text PDF

Emerging insights into the impact of systemic metabolic changes on tumor-immune interactions.

Cell Rep

January 2025

Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA. Electronic address:

Tumors are inherently embedded in systemic physiology, which contributes metabolites, signaling molecules, and immune cells to the tumor microenvironment. As a result, any systemic change to host metabolism can impact tumor progression and response to therapy. In this review, we explore how factors that affect metabolic health, such as diet, obesity, and exercise, influence the interplay between cancer and immune cells that reside within tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!