Genome-wide analysis of the response of Dickeya dadantii 3937 to plant antimicrobial peptides.

Mol Plant Microbe Interact

Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain.

Published: April 2012

Antimicrobial peptides constitute an important factor in the defense of plants against pathogens, and bacterial resistance to these peptides have previously been shown to be an important virulence factor in Dickeya dadantii, the causal agent of soft-rot disease of vegetables. In order to understand the bacterial response to antimicrobial peptides, a transcriptional microarray analysis was performed upon treatment with sub-lethal concentration of thionins, a widespread plant peptide. In all, 36 genes were found to be overexpressed, and were classified according to their deduced function as i) transcriptional regulators, ii) transport, and iii) modification of the bacterial membrane. One gene encoding a uricase was found to be repressed. The majority of these genes are known to be under the control of the PhoP/PhoQ system. Five genes representing the different functions induced were selected for further analysis. The results obtained indicate that the presence of antimicrobial peptides induces a complex response which includes peptide-specific elements and general stress-response elements contributing differentially to the virulence in different hosts.

Download full-text PDF

Source
http://dx.doi.org/10.1094/MPMI-09-11-0247DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptides
16
dickeya dadantii
8
peptides
5
genome-wide analysis
4
analysis response
4
response dickeya
4
dadantii 3937
4
3937 plant
4
antimicrobial
4
plant antimicrobial
4

Similar Publications

The utilization of chemical pesticides recovers 30%-40% of food losses. However, their application has also triggered a series of problems, including food safety, environmental pollution, pesticide resistance, and incidents of poisoning. Consequently, green pesticides are increasingly seen as viable alternatives to their chemical counterparts.

View Article and Find Full Text PDF

Beneficial properties of different natural antimicrobials are topics of scientific curiosity for improving safety and extending the shelf life of food commodities. In this regard, phenolic compounds, natural molecules known for their antioxidant, anti-inflammatory, and antimicrobial properties can be right choice. Moreover, bacteriocins, antimicrobial peptides produced by various microorganisms, capable of inhibiting the growth of other bacteria, particularly closely related species can be genuine alternative.

View Article and Find Full Text PDF

Prior studies examined Acidocin 4356's antibacterial and antivirulence effects against Pseudomonas aeruginosa, including cell membrane penetration abilities. Building on prior research, an in-vitro co-culture of human cells was established to evaluate the selectivity of Acidocin (ACD) by concurrently cultivating human cells and bacterial pathogens. This study evaluated the antibacterial effectiveness of ACD against Acinetobacter baumannii and Pseudomonas aeruginosa.

View Article and Find Full Text PDF

Background: Broiler chickens are most vulnerable immediately after hatching due to their immature immune systems, making them susceptible to infectious diseases. The yolk plays an important role in early immune defence by showing relevant antioxidant and passive immunity capabilities during broiler embryonic development. The immunomodulatory effects of phytogenic compound carvacrol have been widely reported.

View Article and Find Full Text PDF

Background: Early host immunity to acute respiratory infections (ARIs) is heterogenous, dynamic, and critical to an individual's infection outcome. Due to limitations in sampling frequency/timepoints, kinetics of early immune dynamics in natural human infections remain poorly understood. In this nationwide prospective cohort study, we leveraged a Tasso-SST based self-blood collection and stabilization tool (homeRNA) to profile detailed kinetics of the presymptomatic to convalescence host immunity to contemporaneous respiratory pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!