Phosphorylation of Cdc5 regulates its accumulation.

Cell Div

The Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

Published: December 2011

Background: Cdc5 (polo kinase/Plk1) is a highly conserved key regulator of the S. cerevisiae cell cycle from S-phase until cytokinesis. However, much of the regulatory mechanisms that govern Cdc5 remain to be determined. Cdc5 is phosphorylated on up to 10 sites during mitosis. In this study, we investigated the function of phosphorylation site T23, the only full consensus Cdk1 (Cdc28) phosphorylation site present.

Findings: Cdc5T23A introduces a degron that reduces its cellular amount to undetectable levels, which are nevertheless sufficient for normal cell proliferation. The degron acts in cis and is reversed by N-terminal GFP-tagging. Cdk1 kinase activity is required to maintain Cdc5 levels during G2. This, Cdk1 inhibited, Cdc5 degradation is APC/CCdh1 independent and requires new protein synthesis. Cdc5T23E is hyperactive, and reduces the levels of Cdc5 (in trans) and drastically reduces Clb2 levels.

Conclusions: Phosphorylation of Cdc5 by Cdk1 is required to maintain Cdc5 levels during G2. However, phosphorylation of T23 (probably by Cdk1) caps Cdc5 and other CLB2 cluster protein accumulation, preventing potential protein toxicity, which may arise from their overexpression or from APC/CCdh1 inactivation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269358PMC
http://dx.doi.org/10.1186/1747-1028-6-23DOI Listing

Publication Analysis

Top Keywords

cdc5
9
phosphorylation cdc5
8
phosphorylation site
8
required maintain
8
maintain cdc5
8
cdc5 levels
8
phosphorylation
5
cdk1
5
cdc5 regulates
4
regulates accumulation
4

Similar Publications

Chromosome condensation plays a pivotal role during faithful chromosome segregation, hence, understanding the factors that drive condensation is crucial to get mechanistic insight into chromosome segregation. Previously, we showed that in budding yeast, the absence of the non-essential kinetochore proteins affects chromatin-condensin association in meiosis but not in mitosis. A differential organization of the kinetochores, that we and others observed earlier during mitosis and meiosis may contribute to the meiotic-specific role.

View Article and Find Full Text PDF

Decoding the Nucleolar Role in Meiotic Recombination and Cell Cycle Control: Insights into Cdc14 Function.

Int J Mol Sci

November 2024

Instituto de Biología Funcional y Genómica, IBFG, CSIC-USAL, 37007 Salamanca, Spain.

The cell cycle, essential for growth, reproduction, and genetic stability, is regulated by a complex network of cyclins, Cyclin-Dependent Kinases (CDKs), phosphatases, and checkpoints that ensure accurate cell division. CDKs and phosphatases are crucial for controlling cell cycle progression, with CDKs promoting it and phosphatases counteracting their activity to maintain balance. The nucleolus, as a biomolecular condensate, plays a key regulatory role by serving as a hub for ribosome biogenesis and the sequestration and release of various cell cycle regulators.

View Article and Find Full Text PDF

Gpn2 is a highly conserved protein essential for the assembly of RNA polymerase II (RNAPII) in eukaryotic cells. Mutations in Gpn2, specifically Phe105Tyr and Leu164Pro, confer temperature sensitivity and significantly impair RNAPII assembly. Despite its crucial role, the complete range of Gpn2 functions remains to be elucidated.

View Article and Find Full Text PDF

Dynamic protein phosphorylation and dephosphorylation play an essential role in cell cycle progression. Kinases and phosphatases are generally highly conserved across eukaryotes, underlining their importance for post-translational regulation of substrate proteins. In recent years, advances in phospho-proteomics have shed light on protein phosphorylation dynamics throughout the cell cycle, and ongoing progress in bioinformatics has significantly improved annotation of specific phosphorylation events to a given kinase.

View Article and Find Full Text PDF

CELL DIVISION CYCLE 5 (CDC5) is a R2R3-type MYB transcription factor, serving as a key component of modifier of snc1, 4-associated complex/NineTeen complex, which is associated with plant immunity, RNA splicing, and miRNA biogenesis. In this study, we demonstrate that mutation of CDC5 accelerates flowering in Arabidopsis (Arabidopsis thaliana). CDC5 activates the expression of FLOWERING LOCUS C (FLC) by binding to and affecting the enrichment of RNA polymerase II on FLC chromatin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!