Zuo1 functions as a J-protein cochaperone of its partner Hsp70. In addition, the C terminus of Zuo1 and the N terminus of Ssz1, with which Zuo1 forms a heterodimer, can independently activate the Saccharomyces cerevisiae transcription factor pleiotropic drug resistance 1 (Pdr1). Here we report that activation of Pdr1 by Zuo1 or Ssz1 causes premature growth arrest of cells during the diauxic shift, as they adapt to the changing environmental conditions. Conversely, cells lacking Zuo1 or Ssz1 overgrow, arresting at a higher cell density, an effect overcome by activation of Pdr1. Cells lacking the genes encoding plasma membrane transporters Pdr5 and Snq2, two targets of Pdr1, also overgrow at the diauxic shift. Adding conditioned medium harvested from cultures of wild-type cells attenuated the overgrowth of both zuo1Δssz1Δ and pdr5Δsnq2Δ cells, suggesting the extracellular presence of molecules that signal growth arrest. In addition, our yeast two-hybrid analysis revealed an interaction between Pdr1 and both Zuo1 and Ssz1. Together, our results support a model in which (i) membrane transporters, encoded by Pdr1 target genes act to promote cell-cell communication by exporting quorum sensing molecules, in addition to playing a role in pleiotropic drug resistance; and (ii) molecular chaperones function at promoters to regulate this intercellular communication through their activation of the transcription factor Pdr1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3258599 | PMC |
http://dx.doi.org/10.1073/pnas.1119184109 | DOI Listing |
FEMS Yeast Res
January 2023
School of Biological Science and Technology, College of Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan.
In Saccharomyces cerevisiae, the J-protein Zuo1 and the nonconventional Hsp70 homologue Ssz1 stimulate the ATPase activity of the chaperone proteins Ssb1 and Ssb2 (Ssb1/2), which are associated with the ribosomes. The dephosphorylation of sucrose nonfermenting 1 (Snf1) on Thr210 is required for glucose repression. The Ssb1/2 and 14-3-3 proteins Bmh1 and Bmh2 appear to be responsible for the dephosphorylation of Snf1 on Thr210 and glucose repression.
View Article and Find Full Text PDFFEBS Lett
July 2023
Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden.
Arsenite causes proteotoxicity by targeting nascent proteins for misfolding and aggregation. Here, we assessed how selected yeast chaperones and ubiquitin ligases contribute to proteostasis during arsenite stress. Loss of the ribosome-associated chaperones Zuo1, Ssz1, and Ssb1/Ssb2 reduced global translation and protein aggregation, and increased arsenite resistance.
View Article and Find Full Text PDFNat Struct Mol Biol
May 2023
Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
The challenge of nascent chain folding at the ribosome is met by the conserved ribosome-associated complex (RAC), which forms a chaperone triad with the Hsp70 protein Ssb in fungi, and consists of the non-canonical Hsp70 Ssz1 and the J domain protein Zuotin (Zuo1). Here we determine cryo-EM structures of Chaetomium thermophilum RAC bound to 80S ribosomes. RAC adopts two distinct conformations accommodating continuous ribosomal rotation by a flexible lever arm.
View Article and Find Full Text PDFProteins
June 2023
Biology Department, Ursinus College, Collegeville, Pennsylvania, USA.
Many human diseases are associated with the misfolding of amyloidogenic proteins. Understanding the mechanisms cells employ to ensure the integrity of the proteome is therefore a crucial step in the development of potential therapeutic interventions. Yeast cells possess numerous prion-forming proteins capable of adopting amyloid conformations, possibly as an epigenetic mechanism to cope with changing environmental conditions.
View Article and Find Full Text PDFNat Commun
June 2022
State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.
Ribosome associated complex (RAC), an obligate heterodimer of HSP40 and HSP70 (Zuo1 and Ssz1 in yeast), is conserved in eukaryotes and functions as co-chaperone for another HSP70 (Ssb1/2 in yeast) to facilitate co-translational folding of nascent polypeptides. Many mechanistic details, such as the coordination of one HSP40 with two HSP70s and the dynamic interplay between RAC-Ssb and growing nascent chains, remain unclear. Here, we report three sets of structures of RAC-containing ribosomal complexes isolated from Saccharomyces cerevisiae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!