Syndecan-4 (S4) is a cell membrane heparan sulfate proteoglycan that plays a role in satellite cell mediated myogenesis. S4 modulates the proliferation of myogenic satellite cells, but the mechanism of how S4 functions during myogenesis is not well understood. In other cell systems, S4 has been shown to form oligomers in the cell membrane and interact through its cytoplasmic domain with the cytoskeletal protein α-actinin. This study addressed if S4 forms oligomers and interacts with α-actinin in muscle. The S4 cytoplasmic domain was found to interact with α-actinin in a phosphatidylinositol-4,5-bisphosphate dependent manner, but did not associate with vinculin. Through confocal microscopy, both S4 and syndecan-4 without the cytoplasmic domain were localized to the cell membrane. Although the cytoplasmic domain was necessary for the interaction with α-actinin, S4 oligomer formation occurred in the absence of the cytoplasmic domain. These data indicated that S4 function in skeletal muscle is mediated through the formation of oligomers and interaction with the cytoskeletal protein α-actinin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-011-1198-2 | DOI Listing |
Int Immunopharmacol
January 2025
TriArm Therapeutics, Niudun Road 200, 201203 Shanghai, China. Electronic address:
Background: The immunosuppressive microenvironment negatively affects the efficacy of chimeric antigen receptor T (CAR-T) cells in solid tumors. Fusion protein that combining extracellular domain of inhibitory checkpoint protein and the cytoplasmic domain of stimulatory molecule may improve the efficacy of CAR-T cells by reversing the suppressive signals.
Methods: To generate optimal PD1-TLR10 fusion proteins, PD1 extracellular domain and TLR10 intracellular domain were connected by transmembrane domain from PD1, CD28, or TLR10, respectively.
Microbiol Spectr
January 2025
Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway.
Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Molecular Genetics and Genomics, New England Biolabs, Inc, 240 County Road, Ipswich, MA 01938, USA.
Gene expression is regulated by chromatin DNA methylation and other features, including histone post-translational modifications (PTMs), chromatin remodelers and transcription factor occupancy. A complete understanding of gene regulation will require the mapping of these chromatin features in small cell number samples. Here we describe a novel genome-wide chromatin profiling technology, named as Nicking Enzyme Epitope targeted DNA sequencing (NEED-seq).
View Article and Find Full Text PDFTheranostics
January 2025
Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
Mutations in the synaptic protein MAM domain containing glycosylphosphatidylinositol anchor 2 (MDGA2) have been associated with autism spectrum disorder (ASD). Therefore, elucidating the regulatory mechanisms of MDGA2 can help develop effective treatments for ASD. Liquid chromatography-tandem mass spectrometry was carried out to identify proteins interacting with the extracellular domain of RPS23RG1 and with MDGA2, followed by co-immunoprecipitation assays to confirm protein-protein interactions.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center RAS, Kazan, Russian Federation.
Nanotechnology has emerged as a revolutionary domain with diverse applications in medicine, and one of the noteworthy developments is the exploration of bacterial magnetosomes acquired from magnetotactic bacteria (MTB) for therapeutic purposes. The demand for natural nanomaterials in the biomedical field is continuously increasing due to their biocompatibility and eco-friendly nature. MTB produces uniform, well-ordered magnetic nanoparticles inside the magnetosomes, drawing attention due to their unique and remarkable features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!