The biosynthesis of ochratoxin A by Penicillium as one mechanism for adaptation to NaCl rich foods.

Food Microbiol

Max Rubner-Institut, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany.

Published: April 2012

Penicillium.nordicum is an ochratoxin A producing filamentous fungus, which is adapted to sodium chloride and protein rich food environments like certain cheeses or dry cured meats. Penicillium.verrucosum usually occurs on cereals but can also be isolated from brined olives. It could be shown that sodium chloride has a profound influence on the regulation of ochratoxin A biosynthesis in both Penicillium species. High amounts of ochratoxin A are produced by P. nordicum over a wide concentration range of NaCl (5-100 g/l) with a weak optimum at about 20 g/l after growth on YES medium. P. verrucosum shifts secondary metabolite biosynthesis after growth on YES medium from citrinin at low to ochratoxin at elevated NaCl concentrations. The ochratoxin A biosynthesis of P. nordicum is accompanied by an induction of the otapksPN gene, the gene of the ochratoxin A polyketide synthase. A mutant strain unable to produce ochratoxin showed a drastic growth reduction under high NaCl conditions. Determination of the dry weight and the chloride content in the mycelium of the P. nordicum wild type strain and a non-ochratoxin A producing mutant strain showed a much higher increase of both parameters in the mutant compared to the wild type. These results suggest, that the constant biosynthesis and excretion of ochratoxin A, which itself contains a chloride atom, ensures a partial chloride homeostasis in the fungal cell. This mechanism may support the adaptation of ochratoxin A producing Penicillia to NaCl rich foods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2011.08.003DOI Listing

Publication Analysis

Top Keywords

ochratoxin
9
nacl rich
8
rich foods
8
ochratoxin producing
8
sodium chloride
8
ochratoxin biosynthesis
8
growth medium
8
mutant strain
8
wild type
8
biosynthesis
5

Similar Publications

A CRISPR/Cas12a-based competitive aptasensor for ochratoxin A detection.

Anal Methods

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

The serious contamination of ochratoxin A (OTA) in agricultural products has promoted the development of rapid, sensitive, and selective analytical methods for OTA monitoring. We demonstrated a competitive aptasensor for OTA detection using CRISPR/Cas12a as an effective signal amplifier. OTA competes with complementary DNA of the aptamer on the microplate to bind to the aptamer.

View Article and Find Full Text PDF

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Neuroinflammation is involved in various neurological and neurodegenerative disorders in which the activation of microglia is one of the key factors. In this study, we examined the anti-inflammatory effects of the flavonoids nobiletin (5,6,7,8,3',4'-hexamethoxyflavone) and eriodictyol (3',4',5,7-tetraxydroxyflavanone) on human microglia cell line activation stimulated by either lipopolysaccharide (LPS), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) full-length Spike protein (FL-Spike), or the mycotoxin ochratoxin A (OTA). Human microglia were preincubated with the flavonoids (10, 50, and 100 µM) for 2 h, following which, they were stimulated for 24 h.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) and Ochratoxin A (OTA) are considered the most important mycotoxins in terms of food safety. The aim of this study was to evaluate the hepatotoxicity of AFB1 and OTA exposure in Wistar rats and to assess the beneficial effect of fermented whey (FW) and pumpkin (P) as functional ingredients through a proteomic approach. For the experimental procedures, rats were fed AFB1 and OTA individually or in combination, with the addition of FW or a FW-P mixture during 28 days.

View Article and Find Full Text PDF

Holocellulose from a Winemaking By-Product to Develop a Biopolymeric System for Bacterial Immobilization: Adsorption of Ochratoxin A in Wine Model Solutions (Box-Behnken Design).

Toxins (Basel)

January 2025

Multidisciplinary Agroindustry Research Laboratory, Carrera de Ingeniería en Construcción, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca 3460000, Chile.

Significant agro-industrial waste is produced during the winemaking process, including grape stalks, which are a rich source of the valuable biopolymer holocellulose that can be utilized for biotechnological processes. The purpose of this study was to delignify grape stalks in order to extract holocellulose. Then Lactobacillus plantarum (LP) was immobilized in the interstitial spaces of holocellulose and then coated with natural polymers (chitosan, Ch; and alginate, Al) to create the Holo-LP/Ch/Al complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!