L-type Ca(v)1.3 channels control the autonomous pacemaking of the substantia nigra (SN) dopamine (DA) neurons, which maintains the sustained release of DA in the striatum, its target structure. The persistent engagement of L-type channels during pacemaking might lead to increased vulnerability to environmental stressors or degenerative processes, providing a mechanism for the development of Parkinson's disease (PD). Interestingly, L-type channels are not necessary for pacemaking, opening the possible use of calcium channel antagonists as neuroprotective agents for PD without disturbing normal DA function. In this study we aimed to evaluate the consequences of Ca(v)1.3 channels deletion at the neurochemical level. For this purpose, tissue concentrations of DA and their respective metabolites were measured using high performance liquid chromatography (HPLC) in the striatum and the nucleus accumbens (NAcc) of mice lacking the gene for the Ca(v)1.3 channel subunit (CACNA1D) and compared to those in wild-type mice. Striatal DA level did not differ between the two groups. In contrast, the level of serotonin, glutamate, GABA, and taurine were increased by more than 50% in the striatum of Ca(v)1.3 null mice. Neurotransmitters levels in the NAcc did not differ between the different groups. In conclusion, our results neurochemically corroborate the robustness of the nigrostriatal DA neurons in the absence of Ca(v)1.3 channels, but suggest that complete deletion of this channel affected a variety of other transmitter systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2011.12.009DOI Listing

Publication Analysis

Top Keywords

cav13 channels
16
striatum nucleus
8
nucleus accumbens
8
l-type cav13
8
l-type channels
8
channels pacemaking
8
differ groups
8
cav13
6
channels
6
neurochemical characterization
4

Similar Publications

Voltage-gated calcium (CaV) channels form three subfamilies (CaV1-3). The CaV1 and CaV2 channels are heteromeric, consisting of an α1 pore-forming subunit, associated with auxiliary CaVβ and α2δ subunits. The α2δ subunits are encoded in mammals by four genes, CACNA2D1-4.

View Article and Find Full Text PDF

L-type Ca channels in heart and brain.

Wiley Interdiscip Rev Membr Transp Signal

March 2014

Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.

L-type calcium channels (Cav1) represent one of the three major classes (Cav1-3) of voltage-gated calcium channels. They were identified as the target of clinically used calcium channel blockers (CCBs; so-called calcium antagonists) and were the first class accessible to biochemical characterization. Four of the 10 known 1 subunits (Cav1.

View Article and Find Full Text PDF

There has been a spectacular rise in the global prevalence of type 2 diabetes mellitus. Cardiovascular complications are the major cause of morbidity and mortality in diabetic patients. Contractile dysfunction, associated with disturbances in excitation-contraction coupling, has been widely demonstrated in the diabetic heart.

View Article and Find Full Text PDF

N- and P/Q-type Ca2+ channels in adrenal chromaffin cells.

Acta Physiol (Oxf)

February 2008

Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL 60637, USA.

Ca2+ is the most ubiquitous second messenger found in all cells. Alterations in [Ca2+]i contribute to a wide variety of cellular responses including neurotransmitter release, muscle contraction, synaptogenesis and gene expression. Voltage-dependent Ca2+ channels, found in all excitable cells (Hille 1992), mediate the entry of Ca2+ into cells following depolarization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!