Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes.

Res Microbiol

Instituto de Biotecnología, CICVyA, CNIA, INTA Castelar, Dr. N. Repetto y Los Reseros s/n, 1686 Hurlingham, Provincia de Buenos Aires, Argentina.

Published: April 2012

AI Article Synopsis

  • The study analyzed the 16S ribosomal RNA gene to assess bacterial diversity in a pristine forest soil and two soil cultures enriched with cellulolytic bacteria.
  • High bacterial diversity was found in native soil, with over 76% of sequences belonging to Actinobacteria, Proteobacteria, and Acidobacteria, while Proteobacteria dominated the enriched samples.
  • Key bacterial genera identified included Brevundimonas and Caulobacter, along with several others, indicating potential for discovering new enzymes for cellulose degradation.

Article Abstract

Sequence analysis of the 16S ribosomal RNA gene was used to study bacterial diversity of a pristine forest soil and of two cultures of the same soil enriched with cellulolytic bacteria. Our analysis revealed high bacterial diversity in the native soil sample, evidencing at least 10 phyla, in which Actinobacteria, Proteobacteria and Acidobacteria accounted for more than 76% of all sequences. In both enriched samples, members of Proteobacteria were the most frequently represented. The majority of bacterial genera in both enriched samples were identified as Brevundimonas and Caulobacter, but members of Devosia, Sphingomonas, Variovorax, Acidovorax, Pseudomonas, Xanthomonas, Stenotrophomonas, Achromobacter and Delftia were also found. In addition, it was possible to identify cellulolytic taxa such as Acidothermus, Micromonospora, Streptomyces, Paenibacillus and Pseudomonas, which indicates that this ecosystem could be an attractive source for study of novel enzymes for cellulose degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resmic.2011.12.001DOI Listing

Publication Analysis

Top Keywords

cellulolytic bacteria
8
ribosomal rna
8
bacterial diversity
8
enriched samples
8
biodiversity characterization
4
characterization cellulolytic
4
bacteria native
4
native chaco
4
soil
4
chaco soil
4

Similar Publications

Macroalgae Compound Characterizations and Their Effect on the Ruminal Microbiome in Supplemented Lambs.

Vet Sci

December 2024

Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico.

The impact of macroalgae species on rumen function remains largely unexplored. This present study aimed to identify the biocompounds of the three types of marine macroalgae described: (Brown), spp. (Lettuce), spp.

View Article and Find Full Text PDF

Saccharification and co-fermentation of lignocellulosic biomass by a cockroach-gut bacterial symbiont and yeast cocktail for bioethanol production.

BMC Biotechnol

December 2024

Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.

Background: The eco-friendly transformation of agro-industrial wastes through microbial bioconversion could address sustainability challenges in line with the United Nations' Sustainable Development Goals. The bulk of agro-industrial waste consists of lignocellulosic materials with fermentable sugars, predominantly cellulose and hemicellulose. A number of pretreatment options have been employed for material saccharification toward successful fermentation into second-generation bioethanol.

View Article and Find Full Text PDF

Functional and Genomic Insights into the Biotechnological Potential of Vibrio spp. Isolated from Deeply Polluted and Pristine Environments.

Curr Microbiol

December 2024

Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil.

Vibrio spp. are remarkably diverse bacteria, being worthy of investigation not only for their antibiotic resistance and virulence, but also for their biotechnological potential. Indeed, there is increasing evidence that these bacteria display industrially relevant traits, particularly as producers of antimicrobial substances, tensioactive/emulsifying compounds, and enzymes.

View Article and Find Full Text PDF

Teredinibacter turnerae is a cultivable cellulolytic Gammaproteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose and pectin and contribute to wood (lignocellulose) digestion in the shipworm gut.

View Article and Find Full Text PDF

A novel cellulolytic bacterial strain, ROBY, was isolated from a bovine rumen sample using the enrichment culture method. This isolate was found to be , with >99 % similarity according to 16S rRNA gene sequence analysis. The potential use of this strain in combination with doxorubicin (Dox)-integrated cellulose nanoparticles (Dox-CNPs) was evaluated as a proof-of-concept study for the further development of this approach as a novel controlled-release drug delivery strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!