It has been known for many years that cooperative interactions between oncogenes (e.g. RAS, MYC, BCL2) can fuel cancer growth (1-5), but the restricted druggability of many of those interacting cancer genes has hampered translation of combined targeting to medical cancer therapy. The identification and characterization of cooperative cancer signaling pathways amenable to medical therapy is therefore a crucial step towards the establishment of efficient targeted combination treatments urgently needed to improve cancer therapy. Here we review recent findings of our group and colleagues on the molecular mechanisms of cooperative Hedgehog/GLI and Epidermal Growth Factor Receptor (EGFR) signaling, two clinically relevant oncogenic pathways involved in the development of many human malignancies. We also discuss the possible implications of these findings for the design of a therapeutic regimen relying on combined targeting of key effectors of both pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3284771 | PMC |
http://dx.doi.org/10.2741/3917 | DOI Listing |
PLoS One
December 2024
Servier, Research & Development, Gif-sur-Yvette, France.
Improving the selectivity and effectiveness of drugs represents a crucial issue for future therapeutic developments in immuno-oncology. Traditional bulk transcriptomics faces limitations in this context for the early phase of target discovery as resulting gene expression levels represent the average measure from multiple cell populations. Alternatively, single cell RNA sequencing can dive into unique cell populations transcriptome, facilitating the identification of specific targets.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China.
Background: Mirvetuximab Soravtansine (MIRV) is a promising antibody‒drug conjugate (ADC) that targets folate receptor alpha (FRα), which is overexpressed in several types of solid tumors. In November 2022, MIRV was approved in the USA for the treatment of adult patients with FRα-positive, platinum-resistant epithelial ovarian, fallopian tube or primary peritoneal cancer who received 1-3 prior systemic treatment regimens. Therefore, high-quality evidence for its efficacy and safety in different cancers is urgently needed.
View Article and Find Full Text PDFDiscov Oncol
December 2024
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
Antibody-drug conjugates (ADCs) represent a novel class of targeted anti-tumor medications that utilize the covalent linkage between monoclonal antibodies and cytotoxic agents. This unique mechanism combines the cytotoxic potency of drugs with the targeting specificity conferred by antigen recognition. However, it is essential to recognize that many ADCs still face challenges related to off-target toxicity akin to cytotoxic payloads, as well as targeted toxicity and other potential life-threatening adverse effects, such as treatment-induced interstitial lung injury.
View Article and Find Full Text PDFDiscov Nano
December 2024
Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
Cervical cancer remains a significant health challenge in developing countries are high due to low HPV vaccination rates, delayed diagnosis, and restricted healthcare access. Metal nanomaterials, such as copper oxide (CuO) nanoparticles (NPs), have shown significant promise in cancer therapy due to their ability to induce apoptosis. 5-Fluorouracil (5-Fu) enhances the cytotoxic effect against cervical cancer, working synergistically with CuO NPs to maximize the therapeutic impact while potentially reducing the 5-Fu's systemic side effects.
View Article and Find Full Text PDFArch Toxicol
December 2024
State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
Depleted uranium (DU) is a byproduct of uranium enrichment, which can cause heavy-metal toxicity and radiation toxicity as well as serious damage to the kidneys. However, the mechanism of renal injury induced by DU is still unclear. This study aimed to explore the role of ethylmalonic encephalopathy 1 (ETHE1) in DU-induced mitochondrial dysfunction and elucidate the underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!