Aging alters the ability of the brain to respond to injury. One of the major differences between the adult and aged brain is that comparable injuries lead to greater blood brain barrier disruption in the aged brain. The goals of these studies were to quantify the effects of age on BBB permeability using high field strength MRI T1 mapping and to determine whether activation of matrix metalloproteases, their inhibitors, or expression of blood brain barrier structural proteins, occludin, zonnula occludins-1 (ZO-1) and claudin-5 were altered following injury to the aged C57/BL6 mouse brain. T1 mapping studies revealed greater blood brain barrier permeability in the aged (21-24 months old) brain than in the adult (4-6 months old) following controlled cortical impact. The increased blood brain barrier permeability in the pericontusional region was confirmed with IgG immunohistochemistry. MMP-9 activity was increased following controlled cortical impact in the aged brain, and this was accompanied by increased MMP-9 gene expression. MMP-2 activity was higher in the uninjured aged brain than in the adult brain. Occludin and ZO-1 mRNA levels were unchanged following injury in either age group, but claudin-5 mRNA levels were lower in the aged than the adult brain following injury. These results demonstrate quantitative increases in blood brain barrier permeability in the aged brain following injury that are accompanied by increased MMP-9 activation and decreased blood brain barrier repair responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4042317PMC
http://dx.doi.org/10.1016/j.expneurol.2011.12.016DOI Listing

Publication Analysis

Top Keywords

blood brain
28
brain barrier
28
aged brain
20
brain
17
controlled cortical
12
cortical impact
12
barrier permeability
12
matrix metalloproteases
8
aged
8
greater blood
8

Similar Publications

Background: Reaching parenchymal segments of the lateral lenticulostriate artery (LSA) perforators, which represent the medial resection limit in insular gliomas (IG), remains a challenge. The currently described methods are indirect and sometimes, imprecise.

Methods: We report an antegrade direct skeletonization technique to identify these tiny arteries at the medial end of IGs with an illustrative case of grade 2 astrocytoma.

View Article and Find Full Text PDF

Cascade-Responsive Nanoparticles for Efficient CRISPR/Cas9-Based Glioblastoma Gene Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.

CRISPR/Cas9 (CRISPR, clustered regularly interspaced short palindromic repeats) gene editing technology represents great promise for treating glioblastoma (GBM) due to its potential to permanently eliminate tumor pathogenic genes. Unfortunately, delivering CRISPR to the GBM in a safe and effective manner is challenging. Herein, a glycosylated and cascade-responsive nanoparticle (GCNP) that can effectively cross the blood-brain barrier (BBB) and activate CRISPR/Cas9-based gene editing only in the GBM is designed.

View Article and Find Full Text PDF

Non-communicable diseases (NCD) are associated with inflammation and oxidative stress which is further associated with omega-6 (ω6) and omega-3 (ω3) fatty acid (FA) imbalance favoring ω6 FA. By improving ω3 FA consumption, this imbalance can be altered to control NCD. Previously we have reported blends of flaxseed oil (FSO, ω3 FA) with palm olein (PO) or coconut oil (CO) were thermo-oxidatively stable with good storage stability and could improve ω6:ω3 ratio in cell lines.

View Article and Find Full Text PDF

Pediatric Brain Tumors in Western Kenya: Patient Outcomes and Healthcare Providers' Perspectives.

Pediatr Blood Cancer

January 2025

Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya.

Background: Pediatric brain tumors are understudied compared to other pediatric malignancies in low- and middle-income countries. Care delivery is inherently dependent on collaboration between multiple departments. This study aimed to present baseline data of pediatric neuro-oncology care in Western Kenya and illustrate barriers and facilitators of multidisciplinary care.

View Article and Find Full Text PDF

Modern radiotherapy frequently employs radiosensitizers for radiation dose deposition and triggers an immunomodulatory effect to enhance tumor destruction. However, developing glioma-targeted sensitizers remains challenging due to the blood-brain barrier (BBB) and multicomponent instability. This study aims to green-synthesize transferrin-bismuth nanoparticles (TBNPs) as biosafe radiosensitizers to enhance X-ray absorption by tumors and stimulate the immune response for glioma therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!