Among numerous biological activities, natural polyphenols are antioxidants widely distributed in plants capable of inhibiting lipid peroxidation, which belongs to the most serious degenerative cell processes. Positioning of antioxidants in lipid bilayers can provide an insight to the lipid-peroxidation inhibition at the molecular level. This work aims at determining the location and orientation of quercetin and its most representative (glucuronidated, methylated, and sulfated) metabolites in lipid bilayer via molecular dynamic simulations. We show that quercetin derivatives penetrate the lipid bilayer and that the depths of penetration depend on molecular charge and substitutional variations. In the presence of charged substituents (sulfates and glucuronidates), the molecule is pulled toward the lipid bilayer surface. The orientation also depends on substitution as H-bonds are formed between the polar head groups of the bilayer and the (i) OH groups, (ii) sugar, and (iii) sulfate moieties of the antioxidants. As flavonoids and their derivatives are preferentially localized in the lipid bilayer membrane or on the bilayer/water interface, they readily concentrate in a relatively narrow membrane region. Despite the low concentrations of flavonoids in food, their spatial confinement in the membrane greatly enhances their local concentration in this vital region, thus increasing their importance for in vivo biological activities including oxidative stress defense.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp208731g | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
January 2025
Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh-11623, Saudi Arabia.
Int J Pharm
January 2025
Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062 India. Electronic address:
Skin cancer is prevalent worldwide,surpassing all other forms of cancer and it does not respond effectively to conventional formulations. Treatment of skin cancer further require deeper permeation into the skin. Therefore, researchers are working on different types of nanoformulations for delivering therapeutic agents to the site of action.
View Article and Find Full Text PDFJ Biol Inorg Chem
January 2025
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA.
Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
Cenobamate is a new and highly effective antiseizure compound used for the treatment of adults with focal onset seizures and particularly for epilepsy resistant to other antiepileptic drugs. It acts on multiple targets, as it is a positive allosteric activator of γ-aminobutyric acid type A (GABA) receptors and an inhibitor of neuronal sodium channels, particularly of the late or persistent Na current. We recently evidenced the inhibitory effects of cenobamate on the peak and late current component of the human cardiac isoform hNav1.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independenței Str., 050095 Bucharest, Romania.
Glycosylation is a critical post-translational modification that influences protein folding, stability and function. While extensively studied in extracellular and intracellular regions, glycosylation within transmembrane (TM) regions and at membrane interfaces remains poorly understood. This study aimed to map O- and N-glycosylation sites in these regions using a comprehensive database search and structural validation where possible.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!