Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Typically, object recognition is performed based solely on the appearance of the object. However, relevant information also exists in the scene surrounding the object. In this paper, we explore the roles that appearance and contextual information play in object recognition. Through machine experiments and human studies, we show that the importance of contextual information varies with the quality of the appearance information, such as an image's resolution. Our machine experiments explicitly model context between object categories through the use of relative location and relative scale, in addition to co-occurrence. With the use of our context model, our algorithm achieves state-of-the-art performance on the MSRC and Corel data sets. We perform recognition tests for machines and human subjects on low and high resolution images, which vary significantly in the amount of appearance information present, using just the object appearance information, the combination of appearance and context, as well as just context without object appearance information (blind recognition). We also explore the impact of the different sources of context (co-occurrence, relative-location, and relative-scale). We find that the importance of different types of contextual information varies significantly across data sets such as MSRC and PASCAL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2011.276 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!