Relative biological effectiveness of high linear energy transfer α-particles for the induction of DNA-double-strand breaks, chromosome aberrations and reproductive cell death in SW-1573 lung tumour cells.

Oncol Rep

Department of Radiation Oncology, Laboratory for Experimental Oncology and Radiobiology (LEXOR), Centre for Experimental Molecular Medicine, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands.

Published: March 2012

Ionizing radiation-induced foci (IRIF) of DNA repair-related proteins accumulated at DNA double-strand break (DSB) sites have been suggested to be a powerful biodosimetric tool. However, the relationship between IRIF induction and biologically relevant endpoints, such as cell death and formation of chromosome rearrangements is less clear, especially for high linear energy transfer (LET) radiation. It is thus not sufficiently established whether IRIF are valid indicators of biological effectiveness of the various radiation types. This question is more significant in light of the recent advancements in light ion-beam and radionuclide therapy. Dose-effect relationships were determined for the induction of DNA-DSBs, chromosome aberrations and reproductive cell death in cultured SW-1573 cells irradiated with γ-rays from a Cs-137 source or with α-particles from an Am-241 source. Values of relative biological effectiveness (RBE) of the high LET α-particles were derived for these effects. DNA-DSB were detected by scoring of γ-H2AX foci, chromosome aberrations by fragments and translocations using premature chromosome condensation and cell survival by colony formation. Analysis of dose-effect relations was based on the linear-quadratic model. Except for the survival curves, for other effects no significant contribution was derived of the quadratic term in the range of doses up to 2 Gy of γ-rays. Calculated RBE values derived for the linear component of dose-effect relations for γ-H2AX foci, cell reproductive death, chromosome fragments and colour junctions are 1.0±0.3, 14.7±5.1, 15.3±5.9 and 13.3±6.0, respectively. RBE values calculated at a certain biological effect level are 1, 4, 13 and 13, respectively. The RBE values derived from the LQ model are preferred as they are based on clinically relevant doses. The results show that with low LET radiation only a small fraction of the numerous DNA-DSBs yield chromosome damage and reproductive cell death. It is concluded that many of the chromosomal aberrations detected by premature chromosome condensation do not cause reproductive cell death. Furthermore, RBE values for DNA-DSB detectable by γ-H2AX foci shortly after irradiation, provide no information relevant to applications of high LET radiation in radiotherapy. The RBE values of chromosome aberrations assessed by premature chromosome condensation are close to the value for reproductive cell death. This suggests possible relevance to assess RBE values for radiotherapy with high LET ions.

Download full-text PDF

Source
http://dx.doi.org/10.3892/or.2011.1604DOI Listing

Publication Analysis

Top Keywords

cell death
24
rbe values
24
reproductive cell
20
chromosome aberrations
16
biological effectiveness
12
γ-h2ax foci
12
premature chromosome
12
chromosome condensation
12
chromosome
10
relative biological
8

Similar Publications

Colorectal cancer (CRC) is one of the most prevalent and deadly malignancies worldwide. Recently, ferroptosis, a novel form of regulated cell death characterized by iron dependency and lipid peroxidation, has garnered significant attention from researchers. The mechanisms underlying ferroptosis, including intracellular iron levels, lipid peroxidation, and antioxidant system regulation, offer new insights into cancer treatment strategies.

View Article and Find Full Text PDF

Background: Dysbiosis of the lung microbiome can contribute to the initiation and progression of lung cancer. Synchronous multiple primary lung cancer (sMPLC) is an increasingly recognized subtype of lung cancer characterized by high morbidity, difficulties in early detection, poor prognosis, and substantial clinical challenges. However, the relationship between sMPLC pathogenesis and changes in the lung microbiome remains unclear.

View Article and Find Full Text PDF

ZBP1 senses DNA triggering type I interferon signaling pathway and unfolded protein response activation.

Front Immunol

January 2025

Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

The innate immune system promptly detects and responds to invading pathogens, with a key role played by the recognition of bacterial-derived DNA through pattern recognition receptors. The Z-DNA binding protein 1 (ZBP1) functions as a DNA sensor inducing type I interferon (IFN) production, innate immune responses and also inflammatory cell death. ZBP1 interacts with cytosolic DNA via its DNA-binding domains, crucial for its activation.

View Article and Find Full Text PDF

Gualou Guizhi Granule inhibits microglia-mediated neuroinflammation to protect against neuronal apoptosis and .

Front Immunol

January 2025

Institute of Structural Pharmacology and Traditional Chinese Medicine (TCM) Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.

Object: Neuroinflammation mediated by microglia has emerged as a critical factor in ischemic stroke and neuronal damage. Gualou Guizhi Granule (GLGZG) has been shown to suppress inflammation in lipopolysaccharide (LPS)-activated microglia, though the underlying mechanisms and its protective effects against neuronal apoptosis remain unclear. This study aims to investigate how GLGZG regulates the Notch signaling pathway in microglia to reduce neuroinflammation and protect neurons from apoptosis.

View Article and Find Full Text PDF

Background: Colon adenocarcinoma (COAD) is a malignancy with a high mortality rate and complex biological characteristics and heterogeneity, which poses challenges for clinical treatment. Anoikis is a type of programmed cell death that occurs when cells lose their attachment to the extracellular matrix (ECM), and it plays a crucial role in tumor metastasis. However, the specific biological link between anoikis and COAD, as well as its mechanisms in tumor progression, remains unclear, making it a potential new direction for therapeutic strategy research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!