The cutaneous lymphatic system plays a major role in tissue fluid homeostasis and inflammation of the skin. Although several lymphangiogenic factors are known to be involved in the formation of lymphatic vessels, the molecular mechanisms that maintain lymphatic integrity and control the functional drainage of interstitial fluid and resolution of inflammation remain unknown. Here we show that angiopoietin-1 (Ang1) enhances lymphatic integrity and function during inflammation. Ang1 transgenic mice under the control of keratin-14 (K14-Ang1) showed attenuated edema formation and inflammation after UV B (UVB) exposure. After UVB irradiation, blood vascular permeability was inhibited in K14-Ang1 mice compared with wild-type (WT) mice. Moreover, lymphatic vessels of WT mice were markedly enlarged and leaky in inflamed skin, whereas K14-Ang1 mice showed relatively contracted lymphatic vessels together with enhanced lymphatic vascularization. Expression of endothelial-specific tight junction molecules claudin-5 and zonula occludens protein 1 (ZO-1) was strongly down-regulated in the inflamed lymphatic vessels of UVB-exposed WT mice, whereas down-regulation of both claudin-5 and ZO-1 was blocked in UVB-exposed K14-Ang1 mice. In vitro studies revealed that the stability of lymphatic endothelial cells was enhanced in the presence of Ang1, presumably via up-regulation of claudin-5, as well as ZO-1. Claudin-5 knockdown markedly increased the permeability of lymphatic endothelial cells. Overall, our data strongly support the idea that Ang1/Tie2 signaling promotes lymphatic integrity by modulating tight junction molecule expression during inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajpath.2011.11.008 | DOI Listing |
The central nervous system (CNS) parenchyma has conventionally been believed to lack lymphatic vasculature, likely due to a non-permissive microenvironment that hinders the formation and growth of lymphatic endothelial cells (LECs). Recent findings of ectopic expression of LEC markers including Prospero Homeobox 1 (PROX1), a master regulator of lymphatic differentiation, and the vascular permeability marker Plasmalemma Vesicle Associated Protein (PLVAP), in certain glioblastoma and brain arteriovenous malformations (AVMs), has prompted investigation into their roles in cerebrovascular malformations, tumor environments, and blood-brain barrier (BBB) abnormalities. To explore the relationship between ectopic LEC properties and BBB disruption, we utilized endothelial cell-specific overexpression mutants.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia.
Constructing artificial tertiary lymphoid structures (TLSs) opens new avenues for advancing cancer immunotherapy and personalized medicine by creating controllable immune niches. Mesenchymal stromal cells (MSCs) offer an ideal stromal source for such constructs, given their potent immunomodulatory abilities and accessibility. In this study, we explored the potential of adipose-derived MSCs to adopt TLS-supportive phenotypes and facilitate lymphocyte organization.
View Article and Find Full Text PDFPLoS Negl Trop Dis
December 2024
Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, United States of America.
Lymphatic filariasis (LF) is a neglected tropical disease affecting over 51 million people in 72 endemic countries. Causative agents of LF are mosquito-borne parasitic nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori. The adult parasites impact the integrity of lymphatic vessels and damage valves, leading to a remodeling of the lymphatic system and lymphatic dilation.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden.
Background: There still exists controversy about whether the healthy human middle ear mucosa is sterile or if it may harbor a diverse microbiome. Considering the delicacy of the human round window membrane (RWM), different mechanisms may exist for avoiding inner ear pathogen invasion causing sensorineural deafness. We re-analyzed archival human RWMs using light and transmission electron microscopy after decalcification to determine if bacteria are present in clinically normal human middle ears.
View Article and Find Full Text PDFNeurochem Res
December 2024
Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
The central nervous system (CNS) comprises membranes and barriers that are vital to brain homeostasis. Membranes form a robust shield around neural structures, ensuring protection and structural integrity. At the same time, barriers selectively regulate the exchange of substances between blood and brain tissue, which is essential for maintaining homeostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!