The role of the basement membrane is vital in maintaining the integrity and structure of an epithelial layer, acting as both a mechanical support and forming the physical interface between epithelial cells and the surrounding connective tissue. The function of this membrane is explored here in the context of a growing epithelial monolayer, defined such that the epithelial cells divide and migrate along a deformable substrate. A discrete, off-lattice cell-centre modelling approach is undertaken, which permits definition of a basement membrane component, separating the epithelial cells from the tissue stroma whilst responding to forces from both that arise due to cell division, migration and apoptosis. This model is applicable to a range of biological epithelia, including the self-renewing interfollicular epidermis, the olfactory epithelium and the intestinal crypts of Lieberkühn, to inform response and recovery of such tissues following injury. Model simulations show that homeostasis of the growing monolayer can be achieved and sustained, and the necessary balance of interactive cell forces, cell migration and cell death is presented. This work is proposed as a novel extension to the body of discrete models of biological epithelia, permitting investigation of the growth and migration of epithelial cells in a deformable environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2011.12.013 | DOI Listing |
PLoS Pathog
January 2025
Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom.
Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom.
Whipworms (Trichuris spp) are ubiquitous parasites of humans and domestic and wild mammals that cause chronic disease, considerably impacting human and animal health. Egg hatching is a critical phase in the whipworm life cycle that marks the initiation of infection, with newly hatched larvae rapidly migrating to and invading host intestinal epithelial cells. Hatching is triggered by the host microbiota; however, the physical and chemical interactions between bacteria and whipworm eggs, as well as the bacterial and larval responses that result in the disintegration of the polar plug and larval eclosion, are not completely understood.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, Yunnan, China.
Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.
Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Anatomy, University Hospital Essen, Essen, Germany.
Prostate cancer is the second most common type of cancer in male worldwide. Stromal-epithelial interaction is thought to have a major impact on cancer development and progression. Previous studies have shown that interaction via soluble factors lead to a reduction in the expression of xCT and AL122023.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!