A strong synergistic solvation was observed for the mixtures of hydrogen bond donating and accepting solvent pairs. The nature of the interactions between two solvent pairs was investigated with different dye molecules viz. coumarin 480, coumarin 153, 4-aminophthalimide, and p-nitroaniline. Coumarin 480 in differenet alcohols-CHCl(3) (alcohols: MeOH, EtOH, BuOH) binary mixture shows a strong synergism, which is explained in the backdrop of solvent-solvent interactions. Fluorescence quenching of C480 by 1,2-phenylenediamine in the binary solvent mixture exhibited the maximum deviation in quenching constant corresponding to ~0.45 mol fraction of MeOH in MeOH-CHCl(3) binary mixture and hence suggested the maximum extent of hydrogen-bonding interactions prevailing at this proportion of mixture. The solvation behavior of MeOH-CHCl(3) mixture shows strong probe dependence with no synergism observed in p-nitroaniline, which is ascribed to its higher ground state dipole moment (8.8 D) relative to C480 (6.3 D). Interestingly, the strong synergistic signature observed through spectrophotometric measurement of C480 in alcohol-CHCl(3) binary mixture is absent when studied by fluorescence measurement. The higher excited state dipole moment of coumarin 480 (13.1 D) is considered to be the driving force for the absence of synergism in the excited state. In such strongly perturbed systems (due to high dipole moment values) the dominant phenomenon is preferential solvation. Analysis of proton NMR of MeOH-CHCl(3) binary solvent mixture indicates the existence of MeOH-CHCl(3) clusters in the stoichiometric ratio of 1:2.15. Refractive index measurement also infers the existence of hydrogen bonded network structure between MeOH and CHCl(3). A modified Bosch solvent exchange model has been used to determine the feasibility of synergistic behavior and polarity parameter of the mixed solvent structure of MeOH-CHCl(3) binary solvent mixture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp207741h | DOI Listing |
J Am Chem Soc
January 2025
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China.
Potassium (K)-based batteries hold great promise for cryogenic applications owing to the small Stokes radius and weak Lewis acidity of K. Nevertheless, energy-dense (>200 W h kg) K batteries under subzero conditions have seldom been reported. Here, an over 400 W h kg K battery is realized at -40 °C via an anode-free and dual-ion strategy, surpassing these state-of-the-art K batteries and even most Li/Na batteries at low temperatures (LTs).
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Centre for Lasers & Photonics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
Nonideality in a binary solvent mixture is manifested through anomalies in various physical properties like viscosity, dielectric constant, polarity, freezing point, boiling point, and so forth. Sometimes, such anomalies become much more prominent, leading to a synergistic behavior, where the physical property of the mixture is way different from its bulk counterparts. Various alcohols/chlorinated methane binary solvent mixtures show such a synergistic behavior.
View Article and Find Full Text PDFJ Chem Phys
January 2025
CNRS, Laboratoire PHENIX (Physicochimie des Electrolytes et Nanosystèmes Interfaciaux), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France.
By means of a minimal physical model, we investigate the interplay of two phase transitions at play in chromatin organization: (1) liquid-liquid phase separation within the fluid solvating chromatin, resulting in the formation of biocondensates; and (2) the coil-globule crossover of the chromatin fiber, which drives the condensation or extension of the chain. In our model, a species representing a domain of chromatin is embedded in a binary fluid. This fluid phase separates to form a droplet rich in a macromolecule (B).
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Laboratory of Engineering Thermodynamics, RPTU Kaiserslautern, Erwin-Schrödinger-Str. 44, Kaiserslautern 67663, Germany.
Methods for predicting Henry's law constants describing the solubility of solutes in solvents as a function of temperature are essential in chemical engineering. While isothermal properties of binary mixtures can conveniently be predicted with matrix completion methods (MCMs) from machine learning, we advance their application to the temperature-dependent prediction of in the present work by combining them with physical equations describing the temperature dependence. For training the methods, experimental data for 122 solutes and 399 solvents ranging from 173.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
January 2025
Oligometrics, Inc., 2510 47th Street, Suite 208, Boulder, CO, 80301, USA.
The X-ray crystal structure of a multi-aromatic substituted 1,2,3-triazole is presented, which shows an extensive three-dimensional hydrogen-bonding network involving two water mol-ecules and two aceto-nitrile mol-ecules. The structure of 4-{[(4-{[1-({[(3,4-di-meth-oxy-phen-yl)meth-yl](3-acetamido-phen-yl)carbamo-yl}meth-yl)-1-1,2,3-triazol-4-yl]meth-oxy}-3-meth-oxy-phen-yl)meth-yl]amino}-benzoic acid-aceto-nitrile-water (1/2/2), CHNO·2CHN·2HO, features amine-linked aromatic groups that have a variety functionality including a carb-oxy-lic acid, an acetamido group, and meth-oxy ethers. All -H groups, and seven out of ten heteroatoms with available lone-pair electrons, participate in hydrogen bonding, with the aid of dimer-bridging water mol-ecules and aceto-nitrile mol-ecules whose methyl groups form close contacts with oxygen atoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!