Regenerative medicine using bone marrow cells is an attractive therapy for the cure of patients with severe liver disease. Here, we show the therapeutic potential of canine bone marrow stromal cells (BMSCs) in mouse models of CCl(4)-induced chronic liver dysfunction. We used two different models for xenotransplantation, nude mice and cyclosporine A (CSA) immunosuppressed mice. Serum parameters from a standard liver panel were not improved following transplantation. However, fibrotic liver lesions with severe inflammation were decreased in CCl(4)-treated CSA mice following BMSC transplantation. Effective migration of transplanted canine BMSCs was limited to persistently injured liver in CCl(4)-treated CSA mice, where they may be effective in resolving inflammatory fibrotic lesions. These results suggest that canine BMSCs are an effective cell source for liver regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1292/jvms.11-0505DOI Listing

Publication Analysis

Top Keywords

bone marrow
12
therapeutic potential
8
potential canine
8
canine bone
8
marrow stromal
8
stromal cells
8
cells bmscs
8
chronic liver
8
liver dysfunction
8
ccl4-treated csa
8

Similar Publications

Background: The significance of the controlling nutritional status (CONUT) score in predicting the prognostic outcomes of diffuse large B-cell lymphoma (DLBCL) has been widely explored, with conflicting results. Therefore, the present meta-analysis aimed to identify the prognostic significance of the CONUT in DLBCL by aggregating current evidence.

Methods: The Web of Science, PubMed, Embase, CNKI and Cochrane Library databases were searched for articles from inception to October 15, 2024.

View Article and Find Full Text PDF

Detection of early relapse in multiple myeloma patients.

Cell Div

January 2025

Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.

Background: Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times.

View Article and Find Full Text PDF

Alcoholic osteonecrosis of the femoral head (AIONFH) is caused by long-term heavy drinking, which leads to abnormal alcohol and lipid metabolism, resulting in femoral head tissue damage, and then pathological necrosis of femoral head tissue. If not treated in time in clinical practice, it will seriously affect the quality of life of patients and even require hip replacement to treat alcoholic femoral head necrosis. This study will confirm whether M2 macrophage exosome (M2-Exo) miR-122 mediates alcohol-induced BMSCs osteogenic differentiation, ultimately leading to the inhibition of femoral head necrosis.

View Article and Find Full Text PDF

Background: Lysinuric protein intolerance is a rare autosomal disorder caused by mutations in the Slc7a7 gene that lead to impaired transport of neutral and basic amino acids. The gold standard treatment for lysinuric protein intolerance involves a low-protein diet and citrulline supplementation. While this approach partially improves cationic amino acid plasma levels and alleviates some symptoms, long-term treatment is suggested to be detrimental and may lead to life-threatening complications characterized by a wide range of hematological and immunological abnormalities.

View Article and Find Full Text PDF

Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!