Our recent study showed a possibility that newly developed A2 type botulinum toxin (A2NTX) inhibits both spontaneous and evoked transmitter release from inhibitory (glycinergic or GABAergic) and excitatory (glutamatergic) nerve terminals using rat spinal sacral dorsal commissural nucleus neurons. In the present study, to determine the modulatory effect of A2NTX on glycinergic and glutamatergic release probabilities, we tested the effects of A2NTX on a single inhibitory or excitatory nerve ending adherent to a dissociated neuron that was activated by paired-pulse stimuli by using the focal electrical stimulation technique. The results of the present paired-pulse experiments showed clearly that A2NTX enhanced paired-pulse facilitation of evoked glycinergic inhibitory postsynaptic currents and glutamatergic excitatory postsynaptic currents and increased the failure rate (Rf) of the first postsynaptic currents (P(1)) and both the responses. These effects of A2NTX on the amplitude and Rf of the P(1) and the second postsynaptic currents (P(2)) and paired-pulse ratio were rescued by application of 4-aminophthalimide. In summary, the present results showed that A2NTX acts purely presynaptically and inhibits the release machinery of transmitters such as glycine and glutamate, and the transmitter release machinery became less sensitive to intracellular free-Ca(2+) in A2NTX poisoned nerve terminals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1254/jphs.11124fp | DOI Listing |
Acta Physiol (Oxf)
February 2025
Institute for Physiology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
Aim: Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear.
Methods: Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36).
Unlabelled: Neurophysiology studies propose that predictive coding is implemented via alpha/beta (8-30 Hz) rhythms that prepare specific pathways to process predicted inputs. This leads to a state of relative inhibition, reducing feedforward gamma (40-90 Hz) rhythms and spiking to predictable inputs. We refer to this model as predictive routing.
View Article and Find Full Text PDFLymphocyte activation gene 3 (LAG3) is a key receptor involved in the propagation of pathological proteins in Parkinson's disease (PD). This study investigates the role of neuronal LAG3 in mediating the binding, uptake, and propagation of α-synuclein (αSyn) preformed fibrils (PFFs). Using neuronal LAG3 conditional knockout mice and human induced pluripotent stem cells-derived dopaminergic (DA) neurons, we demonstrate that LAG3 expression is critical for pathogenic αSyn propagation.
View Article and Find Full Text PDFAdv Mater
January 2025
Italian Institute of Technology, Genoa, 16163, Italy.
Presently, the in vitro recording of intracellular neuronal signals on microelectrode arrays (MEAs) requires complex 3D nanostructures or invasive and approaches such as electroporation. Here, it is shown that laser poration enables intracellular coupling on planar electrodes without damaging neurons or altering their spontaneous electrophysiological activity, allowing the process to be repeated multiple times on the same cells. This capability distinguishes laser-based neuron poration from more invasive methods like electroporation, which typically serve as endpoint measurement for cells.
View Article and Find Full Text PDFCell Biosci
January 2025
State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China.
Background: Neuropathic pain resulting from spinal cord injury (SCI) is associated with persistent hyperactivity of primary nociceptors. Anandamide (AEA) has been reported to modulate neuronal excitability and synaptic transmission through activation of cannabinoid type-1 receptors (CB1Rs) and transient receptor potential vanilloid 1 (TRPV1). However, the role of AEA and these receptors in the hyperactivity of nociceptors after SCI remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!