Unlabelled: The water solubilization of nanoparticles is key for many applications in biomedicine. Despite the importance of surface functionalization, progress has been largely empirical and very few systematic studies have been performed. Here we report on the water solubilization of quantum dots using lipid encapsulation. We systematically evaluate the monodispersity, zeta potential, stability, and quantum yield for quantum dots encapsulated with single and double acyl-chain lipids, pegylated double acyl-chain lipids, and single alkyl-chain surfactant molecules with charged head groups. We show that charged surfactants and pegylated lipids are important to obtain monodisperse suspensions with high yield and excellent long-term stability.

From The Clinical Editor: This study reports on solubilization of nanoparticles in water, a key, but often neglected aspect for biomedical applications. The authors demonstrate that charged surfactants and PEGylated lipids are important to obtain monodisperse suspensions with high yield and long-term stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320680PMC
http://dx.doi.org/10.1016/j.nano.2011.12.002DOI Listing

Publication Analysis

Top Keywords

quantum dots
12
lipid encapsulation
8
biomedical applications
8
water solubilization
8
solubilization nanoparticles
8
double acyl-chain
8
acyl-chain lipids
8
charged surfactants
8
surfactants pegylated
8
pegylated lipids
8

Similar Publications

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Nitrogen@Carbon quantum dots (N@CQDs) are prepared using microwave hydrothermal method, and polyvinylpyrrolidone (PVP) and melamine are used as mixed C source and N source. Microwave reaction conditions of preparing the N@CQDs are 170 ℃ and 3 h. This N@CQDs are are used as fluorescence probe for detection of amino acids.

View Article and Find Full Text PDF

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices.

View Article and Find Full Text PDF

Room-Temperature CsPbI-Quantum-Dot Reinforced Solid-State Li-Polymer Battery.

Small

January 2025

Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

A novel polymer electrolyte based on CsPbI quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!