If a new generation of iron chelators specifically devoted for cancer chemotherapy emerged these last years, any of them has not yet been approved at this time. Accordingly, there is a need to optimize new chelating molecules for iron chelation therapy and cancer treatment. So, the objective of the present investigation was to characterize the antiproliferative activity and the iron chelating capacity of the iron chelator S1 [bis-N-(8-hydroxyquinoline-5-ylmethyl)benzylamine]. Its effects were compared to O-trensox which binds ferric iron with a very high affinity (pFe(3+)=29.5). For this purpose, primary rat hepatocyte stimulated by EGF and human hepatoma HepaRG cell cultures were used. In these models, the anti-proliferative effect, the inhibition of DNA synthesis and the iron-chelating efficiency of increasing concentrations of S1 and O-trensox (0 up to 200 μM) were investigated. In the two cell culture models, we observed that S1 was about 100 times more efficient than O-trensox and the antiproliferative effect of S1 in HepaRG cells appeared at concentrations as low as 0.1 μM without cytotoxicity. Moreover, the stoichiometry of S1 for iron seemed to be in the range S1/Fe(3+)=1. Using the calcein fluorescence assay, we demonstrated that the affinity of S1 for iron was better than that of O-trensox since it was at least two times more effective to restore the fluorescence of calcein previously quenched by iron. So, the iron chelating efficiency of S1 could explain at least partially its higher anti-proliferative effect compared to O-trensox. Finally, these results suggest that molecules such as S1 may constitute a promising starting point to improve cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2011.12.003DOI Listing

Publication Analysis

Top Keywords

iron chelating
12
iron
9
chelating efficiency
8
cancer treatment
8
compared o-trensox
8
o-trensox
5
antiproliferative iron
4
chelating
4
efficiency bis-8-hydroxyquinoline
4
bis-8-hydroxyquinoline benzylamine
4

Similar Publications

Background: In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.

Results: Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.

View Article and Find Full Text PDF

To observe the characteristics of ocular biological parameters in children with transfusion-dependent β-thalassemia (TDT) and the effect of iron chelator treatment on them. This was a cross-sectional study. Thirty-two children with TDT (TDT group) and 64 healthy children (control group) who were treated in the Affiliated Hospital of Guangdong Medical University from October 2022 to June 2023 were included.

View Article and Find Full Text PDF

Background/aim: This study aimed to investigate the safety and efficacy of deferoxamine (DFO) pretreated feline adipose tissue derived mesenchymal stem cells (fATMSCs) for the treatment of inflammatory disorders.

Materials And Methods: fATMSCs were isolated from feline adipose tissue and characterized using flow cytometry for surface marker expression and differentiation assays for adipogenic, osteogenic, and chondrogenic lineages. Different concentrations of DFO were used to evaluate its impact on fATMSC activity.

View Article and Find Full Text PDF

Stabilizing the Fe Species of Nickel-Iron Double Hydroxide via Chelating Asymmetric Aldehyde-Containing THB Ligand for Long-Lasting Water Oxidation.

Adv Mater

December 2024

State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.

Nickel-iron layered double hydroxides (NiFe LDHs) are considered as promising substitutes for precious metals in oxygen evolution reaction (OER). However, most of the reported NiFe LDHs suffer from poor long-term stability because of the Fe loss during OER resulting in severe inactivation. Herein, a dynamically stable chelating interface through in situ transformation of asymmetric aldehyde-ligand (THB, 1,3,5-Tris(3'-hydroxy-4'-formylphenyl)-benzene) modified NiFe LDHs to anchor Fe and significantly enhance the OER stability is reported.

View Article and Find Full Text PDF

Assessing metal-induced glycation in French fries.

Metallomics

December 2024

Department of Environmental and Physical Sciences, Faculty of Science.

Non-enzymatic glycation is the chemical reaction between the amine group of an amino acid and the carbonyl group of a reducing sugar. The final products of this reaction, advanced glycation end-products (AGEs), are known to play a key role in aging and many chronic diseases. The kinetics of the AGE formation reaction depends on several factors, including pH, temperature, and the presence of prooxidant metals, such as iron and copper.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!