The dielectric response of biconcave erythrocytes exposed to D-glucose and L-glucose has been investigated using a double array of planar interdigitated microelectrodes on a glass microchip. Erythrocytes are analyzed under physiological conditions suspended in hypo-osmolar balanced solutions containing different glucose concentrations (0-20 mM). The glucose effect on the cellular dielectric properties is evaluated by analyzing the spectra using two different approaches, the equivalent circuit model and a modified model for ellipsoidal particles. The results show that at elevated glucose concentration (15 mM) the membrane capacitance increases by 36%, whereas the cytosol conductivity slightly decreases with a variation of about 15%. On the contrary, no variation has been registered with L-glucose, a biologically inactive enantiomer of D-glucose. The paper discusses the possible mechanism controlling the membrane dielectric response. As the external D-glucose increases, the number of activated glucose transporter in the erythrocyte membrane raises and the transition from sugar-free state to sugar-bounded state induces a change in the dipole moments and in the membrane capacitance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2011.11.004 | DOI Listing |
Sci Rep
January 2025
Microwave Engineering Department, Electronics Research Institute (ERI) Cairo, Cairo, Egypt.
This paper presents a novel design approach for an anomalous reflector metasurface for communication systems operating at 8 GHz band. The main contribution of this work is the development of a general analytical method that accurately calculates the electromagnetic response of realistic metasurfaces with periodic impedance profiles. The modulated surface impedance is achieved by incorporating appropriately sized conductive patches on a grounded dielectric substrate.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China.
Plasmonic superlattices enable the precise manipulation of electromagnetic fields at the nanoscale. However, the optical properties of static lattices are dictated by their geometry and cannot be reconfigured. Here, we present a surface-interface engineered plasmonic superlattice with confined polyelectrolyte-functionalized metal-organic framework (MOF) hybrid layers to tune plasmon resonance for ultrafast chemical sensing.
View Article and Find Full Text PDFSci Rep
January 2025
Photonics Research Centre, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
Two-dimensional (2D) hexagonal boron nitride (hBN) has garnered significant attention due to its exceptional thermal and chemical stability, excellent dielectric properties, and unique optical characteristics, making it widely used in deep ultraviolet (DUV) applications. However, the integration of hBN with plasmonic materials in the visible region (532 nm) has not been fully explored, particularly in terms of morphology regulation and size control of mono- and bimetallic nanoparticles (BMNPs) namely gold (Au), silver (Ag) and Au-Ag. A Schottky junction-based metal-semiconductor contact configuration is employed to achieve hot-carrier reflections on the metal side, enhancing the quantum efficiency of the photodetector.
View Article and Find Full Text PDFNat Commun
January 2025
Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
Wireless energy-responsive systems provide a foundational platform for powering and operating intelligent devices. However, current electronic systems relying on complex components limit their effective deployment in ambient environment and seamless integration of energy harvesting, storage, sensing, and communication. Here, we disclose a coupling effect of electromagnetic wave absorption and moist-enabled generation on carrier transportation and energy interaction regulated by ionic diode effect.
View Article and Find Full Text PDFNat Commun
January 2025
College of Materials Science and Technology; Key Laboratory of Material Preparation and Protection for Harsh Environment; Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, China.
With the development of nanotechnology, nano-functional units of different dimensions, morphologies, and sizes exhibit the potential for efficient microwave absorption (MA) performance. However, the multi-unit coupling enhancement mechanism triggered by the alignment and orientation of nano-functional units has been neglected, hindering the further development of microwave absorbing materials (MAMs). In this paper, two typical ZIF-derived nanomaterials are self-assembled into two-dimensional ordered polyhedral superstructures by the simple ice template method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!