Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To assess the performance of parameters used in conventional magnetic resonance imaging (MRI), perfusion-weighted MR imaging (PWI) and visual texture analysis, alone and in combination, to differentiate a single brain metastasis (MET) from glioblastoma multiforme (GBM).
Patients And Methods: In a retrospective study of 50 patients (41 GBM and 14 MET) who underwent T2/FLAIR/T1(post-contrast) imaging and PWI, morphological (circularity, surface area), perfusion (rCBV in the ring-like tumor area, rCBV in the peritumoral area, percentage of signal intensity recovery at the end of first pass) and texture parameters in the peritumoral area were estimated. Statistical differences and performances were assessed using Wilcoxon's test and receiver operating characteristic curves, respectively. Multiparametric classification of tumors was performed using k-means clustering.
Results: Significant statistical differences in circularity, surface area, rCBVs, percentage of signal intensity recovery and texture parameters (energy, entropy, homogeneity, correlation, inverse differential moment, sum average) were observed between MET and GBM (P<0.05). Moderate-to-good classification performances were found with these parameters. Clustering based on rCBV and texture parameters (contrast, sum average) differentiated MET from GBM with a sensitivity of 92% and a specificity of 71%.
Conclusion: Combining perfusion and visual texture parameters within a statistical classifier significantly improved the differentiation of a single brain MET and GBM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurad.2011.11.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!