Context: The bacterium Pseudomonas syringae pv. syringae (Pss) is a pathogen of many plant species and causes, for example, brown spot disease in bean plants (Phaseolus vulgaris). Pss excretes the syringolins, natural product molecules that act as a virulence factors and inhibit the proteasome of the host plants.
Objective: Proteasome inhibitors belong to an important class of anticancer agents and bortezomib (Velcade(®)) has been Food and Drug Administration-approved for the treatment of multiple myeloma (MM) and mantle cell lymphoma. Syringolins represent a new class of proteasome inhibitors and the present work was undertaken to design a potent syringolin-inspired analogue (TIR-203) for anticancer drug development.
Materials And Methods: TIR-203 was tested against human MM and neuroblastoma (NB) cells. Cancer cells were treated with TIR-203 at various concentrations (0-10 µM) and the cell viability was measured using the MTS assay. To determine the effects on proteasomal activities, the cell culture-based proteasome inhibition assay was used. Syringolin A (SylA) and bortezomib were included as controls.
Results: TIR-203 inhibited the cell proliferation of MM and NB cells in a dose-dependent manner at significantly lower concentrations than SylA. In MM cells, TIR-203 effectively inhibited the chymotrypsin-like (CT-L), caspase-like (C-L), and trypsin-like (T-L) activities of the proteasome. In NB cells, TIR-203 inhibited the CT-L and C-L activities, but not the T-L activity.
Discussion And Conclusions: The newly designed proteasome inhibitor TIR-203 is more potent than the natural product SylA and strongly inhibits the cell viability and proteasomal activity of MM and NB cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/13880209.2011.626784 | DOI Listing |
Theranostics
January 2025
Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
Proteolysis Targeting Chimeras (PROTACs) are bifunctional compounds that have been extensively studied for their role in targeted protein degradation (TPD). The capacity to degrade validated or undruggable targets provides PROTACs with significant potency in cancer therapy. However, the clinical application of PROTACs is limited by their poor potency and unfavorable pharmacokinetic properties.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi, China. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) is characterized by extremely poor prognosis, high mortality and limited therapeutic strategy. Autophagy is hyperactivated in PDAC and targeting autophagy are emerging as promising therapeutic strategies. The dysfunction of deubiquitinase USP1 results in tumorigenesis and chemotherapy resistance.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2025
Designing Future Health Initiative, Center for Promotion of Innovation Strategy, Head Office of Enterprise Partnerships, Tohoku University, Miyagi 980-8579, Japan.
Proteasome-dependent protein degradation and the digestion of peptides by aminopeptidases are essential for myogenesis. Methionine aminopeptidases (MetAPs) are uniquely involved in, both, the proteasomal degradation of proteins and in the regulation of translation (via involvement in post-translational modification). Suppressing MetAP1 and MetAP2 expression inhibits the myogenic differentiation of C2C12 myoblasts.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
The fat mass and obesity-associated protein (FTO) is an RNA demethylase required for catalytic demethylation of -methyladenosine (mA); it is highly expressed and functions as an oncogene in acute myeloid leukemia (AML). Currently, the overarching objective of targeting FTO is to precisely inhibit the catalytic activity. Meanwhile, whether FTO degradation also exerts antileukemic effects remains unknown.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
Background: Targeting exportin1 (XPO1) with Selinexor (SEL) is a promising therapeutic strategy for patients with multiple myeloma (MM). However, intrinsic and acquired drug resistance constitute great challenges. SEL has been reported to promote the degradation of XPO1 protein in tumor cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!