The CO(2) fixation ability of N-heterocyclic carbenes (NHC) has been assessed on the basis of electronic and steric properties of the N- and C-substituents, measured in terms of molecular electrostatic potential minimum, observed at the carbene lone pair region of NHC (V(min1)) as well as at the carboxylate region of the NHC-CO(2) adduct (V(min2)). Both V(min1) and V(min2) are found to be simple and efficient descriptors of the stereoelectronic effect of NHCs. The V(min)-based analysis also proved that the stereoelectronic effect of N- and C-substituents is additive. When only C-substituents are present in NHC, its CO(2) affinity solely depends on the electronic effect, whereas if the N-center bears the substituents, the steric factor plays a major role in the carboxylation/decarboxylation process. For standard substituents, maximum CO(2) binding energy of 18.0 kcal/mol is observed for the most electron-donating combination of NMe(2) as the C-substituent and Me as the N-substituent. Introduction of ring strain through five-membered ring fusion at the NC bond slightly increased the electron-rich character of the carbene lone pair and also enhanced the CO(2) binding energy to 20.9 kcal/mol. To further improve the CO(2) fixing ability of NHCs, we have proposed the use of CH(2)OH, CH(2)NHCOMe, and CH(2)NHPh as N-substituents, as they participate in intramolecular hydrogen bond interaction with the carboxylate. With the new strategy, considerable improvement in the CO(2) binding energy (26.5 to 33.0 kcal/mol) is observed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo202382gDOI Listing

Publication Analysis

Top Keywords

co2 binding
12
binding energy
12
co2 fixation
8
fixation ability
8
ability n-heterocyclic
8
n-heterocyclic carbenes
8
carbene lone
8
lone pair
8
kcal/mol observed
8
co2
7

Similar Publications

Functional flexible adsorbents and their potential utility.

Chem Commun (Camb)

January 2025

Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.

Physisorbents are poised to address global challenges such as CO capture, mitigation of water scarcity and energy-efficient commodity gas storage and separation. Rigid physisorbents, those adsorbents that retain their structures upon gas or vapour exposure, are well studied in this context. Conversely, cooperatively flexible physisorbents undergo long-range structural transformations stimulated by guest exposure.

View Article and Find Full Text PDF

Identifying the Structure of Two-Dimensional ACuO (A = Na, K, Cs) Film on Cu(111) with Atomic Resolution.

J Phys Chem Lett

January 2025

College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China.

The deposition of alkali metals on oxide surfaces has garnered significant interest due to their critical role in enhancing various catalytic processes. However, the atomic-scale characterization of these structures remains elusive, owing to the complex and competing interactions among the oxygen, the alkali metals, and the metal atoms within the oxides. In this work, we grew alkali metals (Na, K, Cs) on the copper oxide films on the Cu(111) surface and found the formation of hexagonally ordered monolayer films.

View Article and Find Full Text PDF

In the CO reduction reactions (CORR), the product selectivity is strongly dependent on the binding energy differences of the key intermediates. Herein, we systematically evaluated the CORR reaction pathways on single transition metal atom doped catalysts TMCu/CuO by density functional theory (DFT) methods and found that *CO is more likely to undergo C-O bond cleavage rather than be hydrogenated on TMCu/CuO (TM = Sc, Ti, V, Cr, Mn, Fe, Co), which facilitates C production with a low-energy pathway of OC-C coupling, while it prefers to be hydrogenated to form CHO on TMCu/CuO (TM = Ni, Cu). The defects of Cu in TMCu/CuO were confirmed to enhance the production of ethanol.

View Article and Find Full Text PDF

Efficient CO2 capture at concentrations between 400-2000 ppm is essential for maintaining air quality in a habitable environment and advancing carbon capture technologies. This study introduces NICS-24 (National Institute of Chemistry Structures No. 24), a Zn-oxalate 3,5-diamino-1,2,4-triazolate framework with two distinct square-shaped channels, designed to enhance CO2 capture at indoor-relevant concentrations.

View Article and Find Full Text PDF

Photoinduced formation of a platina-α-lactone - a carbon dioxide complex of platinum. Insights from femtosecond mid-infrared spectroscopy.

Phys Chem Chem Phys

January 2025

Abteilung für Molekulare Physikalische Chemie, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstraße 12, 53115 Bonn, Germany.

The binding of carbon dioxide to a transition metal is a complex phenomenon that involves a major redistribution of electron density between the metal center and the triatomic ligand. The chemical reduction of the ligand reveals itself unambiguously by an angular distortion of the CO-molecule as a result of the occupation of an anti-bonding π-orbital and a shift of its antisymmetric stretching vibration, ν, to lower wavenumbers. Here, we generate a carbon dioxide complex of the heavier group-10 metal, platinum, by ultrafast electronic excitation and cleavage of CO from the photolabile oxalate precursor, oxaliplatin, and monitored the ensuing primary dynamics with ultrafast mid-infrared spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!