Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes.

Mol Cell

Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U 964, Université de Strasbourg, BP 10142-67404 ILLKIRCH Cedex, France.

Published: December 2011

We show that the time required to transcribe human genes larger than 800 kb spans more than one complete cell cycle, while their transcription speed equals that of smaller genes. Independently of their expression status, we find the long genes to replicate late. Regions of concomitant transcription and replication in late S phase exhibit DNA break hot spots known as common fragile sites (CFSs). This CFS instability depends on the expression of the underlying long genes. We show that RNA:DNA hybrids (R-loops) form at sites of transcription/replication collisions and that RNase H1 functions to suppress CFS instability. In summary, our results show that, on the longest human genes, collisions of the transcription machinery with a replication fork are inevitable, creating R-loops and consequent CFS formation. Functional replication machinery needs to be involved in the resolution of conflicts between transcription and replication machineries to ensure genomic stability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2011.10.013DOI Listing

Publication Analysis

Top Keywords

human genes
12
common fragile
8
longest human
8
long genes
8
transcription replication
8
cfs instability
8
genes
6
transcription
5
collisions replication
4
replication transcription
4

Similar Publications

Colorectal cancer (CRC) ranks third globally in cancer incidence and mortality, posing a significant human concern. Recent advancements in immunotherapy are noteworthy. This study explores immune modulation for CRC treatment.

View Article and Find Full Text PDF

Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.

View Article and Find Full Text PDF

Purpose: Epstein-Barr virus (EBV)-positive Burkitt lymphoma (BL) affects children in sub-Saharan Africa, but diagnosis via tissue biopsy is challenging. We explored a liquid biopsy approach using targeted next-generation sequencing to detect the -immunoglobulin (-Ig) translocation and EBV DNA, assessing its potential for minimally invasive BL diagnosis.

Materials And Methods: The panel included targets for the characteristic -Ig translocation, mutations in intron 1 of , mutations in exon 2 of , and three EBV genes: EBV-encoded RNA (EBER)1, EBER2, and EBV nuclear antigen 2.

View Article and Find Full Text PDF

To curb the obesity epidemic, it is imperative that we improve our understanding of the mechanisms controlling fat mass and body weight regulation. While great progress has been made in mapping the biological feedback forces opposing weight loss, the mechanisms countering weight gain remain less well defined. Here, we integrate a mouse model of intragastric overfeeding with a comprehensive evaluation of the regulatory aspects of energy balance, encompassing food intake, energy expenditure, and fecal energy excretion.

View Article and Find Full Text PDF

Case-only designs in longitudinal cohorts are a valuable resource for identifying disease-relevant genes, pathways, and novel targets influencing disease progression. This is particularly relevant in Alzheimer's disease (AD), where longitudinal cohorts measure disease "progression," defined by rate of cognitive decline. Few of the identified drug targets for AD have been clinically tractable, and phenotypic heterogeneity is an obstacle to both clinical research and basic science.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!