Molecularly hybridized materials composed of polymer semiconductors (PSCs) and single-walled carbon nanotubes (SWNTs) may provide a new way to exploit an advantageous combination of semiconductors, which yields electrical properties that are not available in a single-component system. We demonstrate for the first time high-performance inkjet-printed hybrid thin film transistors with an electrically engineered heterostructure by using specially designed PSCs and semiconducting SWNTs (sc-SWNTs) whose system achieved a high mobility of 0.23 cm(2) V(-1) s(-1), no V(on) shift, and a low off-current. PSCs were designed by calculation of the density of states of the backbone structure, which was related to charge transfer. The sc-SWNTs were prepared by a single cascade of the density-induced separation method. We also revealed that the binding energy between PSCs and sc-SWNTs was strongly affected by the side-chain length of PSCs, leading to the formation of a homogeneous nanohybrid film. The understanding of electrostatic interactions in the heterostructure and experimental results suggests criteria for the design of nanohybrid heterostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn2041472 | DOI Listing |
Science
January 2025
Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, China.
One of the primary challenges in commercializing perovskite solar cells (PSCs) is achieving both high power conversion efficiency (PCE) and sufficient stability. We integrate wafer-scale continuous monolayer MoS buffers at the top and bottom of a perovskite layer through a transfer process. These films physically block ion migration of perovskite into carrier transport layers and chemically stabilize the formamidinium lead iodide phase through strong coordination interaction.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Southern University of Science and Technology, Department of Materials Science and Engineering, NO.1088,Xueyuan Avenue,Nanshan District, 518055, Shenzhen, CHINA.
Tin dioxide (SnO2) stands as a promising material for the electron transport layer (ETL) in perovskite solar cells (PSCs) attributed to its superlative optoelectronic properties. The attainment of superior power conversion efficiency hinges critically on the preparation of high-quality SnO2 thin films. However, conventional nanoparticle SnO2 colloids often suffer from inherent issues such as numerous oxygen vacancy defects and film non-uniformity.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
Hole-transport layers (HTL) in perovskite solar cells (PSCs) with an n-i-p structure are commonly doped by bis(trifluoromethane)sulfonimide (TFSI) salts to enhance hole conduction. While lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) dopant is a widely used and effective dopant, it has significant limitations, including the need for additional solvents and additives, environmental sensitivity, unintended oxidation, and dopant migration, which can lead to lower stability of PSCs. A novel ionic liquid, 1-(2-methoxyethyl)-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (MMPyTFSI), is explored as an alternative dopant for 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
Currently, the development of polymeric hole-transporting materials (HTMs) lags behind that of small-molecule HTMs in inverted perovskite solar cells (PSCs). A critical challenge is that conventional polymeric HTMs are incapable of forming ultra-thin and conformal coatings like self-assembly monolayers (SAMs), especially for substrates with rough surface morphology. Herein, we address this challenge by designing anchorable polymeric HTMs (CP1 to CP5).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China.
Flexible perovskite solar cells (FPSCs) are a promising emerging photovoltaic technology, with certified power conversion efficiencies reaching 24.9 %. However, the frequent occurrence of grain fractures and interface delamination raises concerns about their ability to endure the mechanical stresses caused by temperature fluctuations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!