Nitric oxide (NO) has emerged as a key molecule involved in many physiological processes in plants. Whether NO reduces aluminum (Al) toxicity by regulating the levels of endogenous hormones in plants is still unknown. In this study, the effects of NO on Al tolerance and hormonal changes in the root apices of rye and wheat were investigated. Rye was more tolerant to Al stress than wheat according to the results of root elongation and Al content determined. Root inhibition exposed to Al was in relation to Al accumulation in the root apices. Al treatment decreased GA content and increased the values of IAA/GA and ABA/GA. Supplementation of NO donor sodium nitroprusside (SNP) reduced the inhibition of root elongation by increasing GA content and decreasing the values of IAA/GA and IAA/ZR under Al stress. NO scavenger 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide (cPTIO) can reversed SNP alleviating effect on Al toxicity. However, the regulating patterns of NO on the values of ABA/GA, GA/ZR and ABA/(IAA+GA+ZR) were different between rye and wheat. The values of ABA/GA and ABA/(IAA+GA+ZR) increased in rye, but decreased in wheat. The change of GA/ZR value was opposite. These results suggest that NO may reduce Al accumulation in the root apices by regulating hormonal equilibrium to enhance Al-tolerance in plants, which effect is more remarkable in Al-sensitive wheat.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2011.07.012DOI Listing

Publication Analysis

Top Keywords

root apices
16
rye wheat
12
nitric oxide
8
regulating hormonal
8
hormonal equilibrium
8
apices rye
8
toxicity regulating
8
root elongation
8
accumulation root
8
values iaa/ga
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!