AI Article Synopsis

  • Fabry disease is caused by a deficiency in the enzyme α-galactosidase, which can potentially be treated with pharmacological chaperone therapy to stabilize the enzyme and boost its activity.
  • Research demonstrated that the small molecules 1-deoxygalactonojirimycin (DGJ) and galactose effectively stabilize the α-galactosidase protein, with DGJ showing greater potency due to its ionic interaction with the amino acid D170.
  • The findings provide a biochemical basis for using pharmacological chaperones as a treatment strategy for Fabry disease and may be applicable to other diseases caused by protein misfolding.

Article Abstract

Fabry disease patients show a deficiency in the activity of the lysosomal enzyme α-galactosidase (α-GAL or α-Gal A). One proposed treatment for Fabry disease is pharmacological chaperone therapy, where a small molecule stabilizes the α-GAL protein, leading to increased enzymatic activity. Using enzyme kinetics, tryptophan fluorescence, circular dichroism, and proteolysis assays, we show that the pharmacological chaperones 1-deoxygalactonojirimycin (DGJ) and galactose stabilize the human α-GAL glycoprotein. Crystal structures of complexes of α-GAL and chaperones explain the molecular basis for the higher potency of DGJ over galactose. Using site-directed mutagenesis, we show the higher potency of DGJ results from an ionic interaction with D170. We propose that protonation of D170 in acidic conditions leads to weaker binding of DGJ. The results establish a biochemical basis for pharmacological chaperone therapy applicable to other protein misfolding diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246215PMC
http://dx.doi.org/10.1016/j.chembiol.2011.10.012DOI Listing

Publication Analysis

Top Keywords

molecular basis
8
basis pharmacological
8
fabry disease
8
pharmacological chaperone
8
chaperone therapy
8
dgj galactose
8
higher potency
8
potency dgj
8
α-gal
5
pharmacological
4

Similar Publications

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al, Cr and Fe ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/HO (9:1, v/v) was significantly enhanced upon addition of Al, Cr and Fe ions while addition of other metal ions (Li, Na, K, Ag, Cu, Fe, Zn, Co, Ni, Mn, Sr, Hg, Ca, Mg, Ce, Bi and Au) did not bring about substantial change in fluorescence emission.

View Article and Find Full Text PDF

Limited treatment options are available for bladder cancer (BCa) resulting in extremely high mortality rates. Cyclovirobuxine D (CVB-D), a naturally alkaloid, reportedly exhibits notable antitumor activity against diverse tumor types. However, its impact on CVB-D on BCa and its precise molecular targets remain unexplored.

View Article and Find Full Text PDF

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

Light-driven molecular rotary motors are nanometric machines able to convert light into unidirectional motions. Several types of molecular motors have been developed to better respond to light stimuli, opening new avenues for developing smart materials ranging from nanomedicine to robotics. They have great importance in the scientific research across various disciplines, but a detailed comprehension of the underlying ultrafast photophysics immediately after photo-excitation, that is, Franck-Condon region characterization, is not fully achieved yet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!