Our objective is to facilitate semi-automated detection of suspicious access to EHRs. Previously we have shown that a machine learning method can play a role in identifying potentially inappropriate access to EHRs. However, the problem of sampling informative instances to build a classifier still remained. We developed an integrated filtering method leveraging both anomaly detection based on symbolic clustering and signature detection, a rule-based technique. We applied the integrated filtering to 25.5 million access records in an intervention arm, and compared this with 8.6 million access records in a control arm where no filtering was applied. On the training set with cross-validation, the AUC was 0.960 in the control arm and 0.998 in the intervention arm. The difference in false negative rates on the independent test set was significant, P=1.6×10(-6). Our study suggests that utilization of integrated filtering strategies to facilitate the construction of classifiers can be helpful.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243249PMC

Publication Analysis

Top Keywords

access ehrs
12
integrated filtering
12
detection suspicious
8
suspicious access
8
access records
8
intervention arm
8
control arm
8
filtering
5
access
5
anomaly signature
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!