Recognition of external mechanical signals is vital for mammalian cells. Cyclic stretch, e.g. around blood vessels, is one such signal that induces cell reorientation from parallel to almost perpendicular to the direction of stretch. Here, we present quantitative analyses of both, cell and cytoskeletal reorientation of umbilical cord fibroblasts. Cyclic strain of preset amplitudes was applied at mHz frequencies. Elastomeric chambers were specifically designed and characterized to distinguish between zero strain and minimal stress directions and to allow accurate theoretical modeling. Reorientation was only induced when the applied stretch exceeded a specific amplitude, suggesting a non-linear response. However, on very soft substrates no mechanoresponse occurs even for high strain. For all stretch amplitudes, the angular distributions of reoriented cells are in very good agreement with a theory modeling stretched cells as active force dipoles. Cyclic stretch increases the number of stress fibers and the coupling to adhesions. We show that changes in cell shape follow cytoskeletal reorientation with a significant temporal delay. Our data identify the importance of environmental stiffness for cell reorientation, here in direction of zero strain. These in vitro experiments on cultured cells argue for the necessity of rather stiff environmental conditions to induce cellular reorientation in mammalian tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241701 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028963 | PLOS |
Natl Sci Rev
January 2025
State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China.
It remains challenging to design efficient bifunctional semiconductor materials in organic photovoltaic and photodetector devices. Here, we report a butterfly-shaped molecule, named WD-6, which exhibits low energy disorder and small reorganization energy due to its enhanced molecular rigidity and unique assembly with strong intermolecular interaction. The binary photovoltaic device based on PM6:WD-6 achieved an efficiency of 18.
View Article and Find Full Text PDFEnviron Technol
January 2025
Solid-State Physics and Accelerators Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
Waste polyethylene (WPE) and virgin polyethylene (VPE) (50:50) thermoplastic have been melt-mixed with biochar (BC) made from orange peels at ratios of 5, 10, and 15(Phr) to evaluate how the filler content affected the mechanical, thermal, optical, electrical conductivity, and electromagnetic interference (EMI). γ-rays was applied to the prepared specimens to assess how radiation affected the created biocomposites. From the obtained results, the combination of BC with γ-rays, at doses of up to 100 kGy, with thermoplastic resulted in an enhanced mechanical property, particularly for composites containing 15 Phr of BC added because of its unique structure and excellent dispersion.
View Article and Find Full Text PDFPhys Eng Sci Med
January 2025
RF Longevity, 428 E. Thunderbird Road, Phoenix, SE, AZ, 85022, USA.
We have previously shown in small studies that full brain Transcranial Radiofrequency Wave Treatment (TRFT) to subjects with Alzheimer's Disease could stop and reverse their cognitive decline. An 8-emitter head device, the "MemorEM", was used in these studies to provide TRFT at 915 MHz frequency and power level of 1.6 W/kg Specific Absorption Rate (SAR) during daily 1-hour treatments.
View Article and Find Full Text PDFHeliyon
December 2024
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
In this article, the propagation of high-frequency (HF) plane electromagnetic waves through the lower ionosphere is numerically investigated using the real geometry of the Earth's magnetic field in the northern hemisphere. For this purpose, the profiles of electron density and the collision frequency in the layers of the lower ionosphere (D- and E-region) are considered using the reported experimental data for day and night. The reflection, transmission, and absorption coefficients of HF radio waves in the frequency range of 3 to 30 MHz are calculated in the ionosphere plasma.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Electrical and Biomedical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
This feasibility study presents a novel noncontact method for differentiating standard cannabidiol (CBD) concentrations using optimized interdigital electrodes. The electrode design, with a 100 mm sensing area on a 64 mm × 77 mm FR-4 substrate, was improved through finite element analysis. Methanol-CBD solutions (25-1000 ppm) in 2 mL glass vials were analyzed using a vector network analyzer connected via a high-frequency SMA connector, focusing on scattering parameter (S-parameter) changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!