Due to its influence on body size, timing of maturation is an important life-history trait in ectotherms with indeterminate growth. Comparison of patterns of growth and maturation within and between two populations (giant vs. normal sized) of nine-spined sticklebacks (Pungitius pungitius) in a breeding experiment revealed that the difference in mean adult body size between the populations is caused by differences in timing of maturation, and not by differential growth rates. The fish in small-sized population matured earlier than those from large-sized population, and maturation was accompanied by a reduction in growth rate in the small-sized population. Males matured earlier and at smaller size than females, and the fish that were immature at the end of the experiment were larger than those that had already matured. Throughout the experimental period, body size in both populations was heritable (h(2) = 0.10-0.64), as was the timing of maturation in the small-sized population (h(2) = 0.13-0.16). There was a significant positive genetic correlation between body size and timing of maturation at 140 DAH, but not earlier (at 80 or 110 DAH). Comparison of observed body size divergence between the populations revealed that Q(ST) exceeded F(ST) at older ages, indicating adaptive basis for the observed divergence. Hence, the results suggest that the body size differences within and between populations reflect heritable genetic differences in the timing of maturation, and that the observed body size divergence is adaptive.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3237540PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028859PLOS

Publication Analysis

Top Keywords

body size
32
timing maturation
24
size timing
12
small-sized population
12
size
9
body
8
maturation
8
pungitius pungitius
8
size populations
8
differences timing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!