Virus assembly and interaction with host-cell proteins occur at length scales below the diffraction limit of visible light. Novel super-resolution microscopy techniques achieve nanometer resolution of fluorescently labeled molecules. The cellular restriction factor tetherin (also known as CD317, BST-2 or HM1.24) inhibits the release of human immunodeficiency virus 1 (HIV-1) through direct incorporation into viral membranes and is counteracted by the HIV-1 protein Vpu. For super-resolution analysis of HIV-1 and tetherin interactions, we established fluorescence labeling of HIV-1 proteins and tetherin that preserved HIV-1 particle formation and Vpu-dependent restriction, respectively. Multicolor super-resolution microscopy revealed important structural features of individual HIV-1 virions, virus assembly sites and their interaction with tetherin at the plasma membrane. Tetherin localization to micro-domains was dependent on both tetherin membrane anchors. Tetherin clusters containing on average 4 to 7 tetherin dimers were visualized at HIV-1 assembly sites. Combined biochemical and super-resolution analysis revealed that extended tetherin dimers incorporate both N-termini into assembling virus particles and restrict HIV-1 release. Neither tetherin domains nor HIV-1 assembly sites showed enrichment of the raft marker GM1. Together, our super-resolution microscopy analysis of HIV-1 interactions with tetherin provides new insights into the mechanism of tetherin-mediated HIV-1 restriction and paves the way for future studies of virus-host interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240612 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1002456 | DOI Listing |
EBioMedicine
December 2024
Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Research University, Paris, France.
Background: Neovascularisation of carotid plaques contributes to their vulnerability. Current imaging methods such as contrast-enhanced ultrasound (CEUS) usually lack the required spatial resolution and quantification capability for precise neovessels identification. We aimed at quantifying plaque vascularisation with ultrasound localization microscopy (ULM) and compared the results to histological analysis.
View Article and Find Full Text PDFAnal Chem
December 2024
Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
(HP) is a freshwater alga known for its ability to accumulate the potent antioxidant astaxanthin, which has extensive applications in aquaculture, pharmaceuticals, and cosmetics. Astaxanthin rapidly accumulates under unfavorable environmental conditions. However, the mechanisms of astaxanthin accumulation under various stress conditions remain unclear.
View Article and Find Full Text PDFJ Biomed Opt
December 2024
University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, United Kingdom.
Significance: Current super-resolution imaging techniques allow for a greater understanding of cellular structures; however, they are often complex or only have the ability to image a few cells at once. This small field of view (FOV) may not represent the behavior across the entire sample, and manual selection of regions of interest (ROIs) may introduce bias. It is possible to stitch and tile many small ROIs; however, this can result in artifacts across an image.
View Article and Find Full Text PDFBrain
December 2024
Neuroimmunology Program, Fundació Clínic per la Recerca Biomèdica - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona 08036, Spain.
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a disorder mediated by autoantibodies against the GluN1 subunit of NMDAR. It occurs with severe neuropsychiatric symptoms that often improve with immunotherapy. Clinical studies and animal models based on patients' antibody transfer or NMDAR immunization suggest that the autoantibodies play a major pathogenic role.
View Article and Find Full Text PDFLocalization microscopy enables imaging with resolutions that surpass the conventional optical diffraction limit. Notably, the Maximally INFormative LUminescence eXcitation (MINFLUX) method achieves super-resolution by shaping the excitation point spread function (PSF) to minimize the required photon flux for a given precision. Various beam shapes have recently been proposed to improve localization efficiency, yet their optimality remains an open question.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!