The chiral recognition phenomenon was observed in enantioselective and excited-state energy transfer processes. Based on bimolecular luminescence quenching kinetics for a system containing chiral molecules, the quenching efficiency was evaluated by Stern-Volmer equation for a system containing a chiral R(+) and S(-) resolved quencher species. The utility of this methodology is confirmed by examining the enantio-selective excited-state quenching between Eu(dpa)(3) complex (where dpa = pyridine-2,6-dicarboxylate) acting as the energy donor to R(+)-1,1-Bi(2-Naphthol) and S(-)-1,1-Bi(2-naphthol) as the energy acceptor was studied in solution. The results of this study confirm the utility of luminescence measurements as a probe of chiral discriminatory behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10895-011-1024-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!