Microfluidic fabrication of cationic curcumin nanoparticles as an anti-cancer agent.

Nanoscale

Centre for Strategic Nano-Fabrication, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, WA 6009, Australia.

Published: April 2012

Curcumin nanoparticles of less than 50 nm in diameter are accessible using a continuous flow microfluidic rotating tube processor (RTP) under scalable conditions, at room temperature. A mixture of DDAB and Pluronic F127 renders higher stability of the curcumin nanoparticles in physiological pH 7.4 for up to eight hours. The nanoparticles have enhanced cytotoxicity in estrogens receptor negative and positive breast cancer cell lines compared with free curcumin.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2nr11502fDOI Listing

Publication Analysis

Top Keywords

curcumin nanoparticles
12
microfluidic fabrication
4
fabrication cationic
4
curcumin
4
cationic curcumin
4
nanoparticles
4
nanoparticles anti-cancer
4
anti-cancer agent
4
agent curcumin
4
nanoparticles diameter
4

Similar Publications

This study explores a sustainable method for synthesizing quinazoline derivatives through visible light-driven photocatalysis using curcumin-sensitized titanium dioxide (TiO) nanoparticles. A one-pot, three-component reaction involving aldehydes, urea/thiourea, and dimedone was utilized to efficiently produce quinazoline compounds. The photocatalytic performance of curcumin-sensitized TiO (Cur-TiO) was compared to pure TiO (P-TiO), with Cur-TiO showing significantly enhanced activity.

View Article and Find Full Text PDF

Heat stress greatly impairs poultry productivity, underscoring the urgent need for effective strategies to mitigate these adverse effects and improve overall poultry health. This study assessed the impact of dietary curcumin nanoparticles (CurNPs) on blood metabolites, immunity, redox status, ileal histomorphometry, and growth of broilers subjected to heat stress. A total of 400 one-day-old Ross-308 broiler chicks were randomly distributed into five groups, each consisting of eight replicates with ten birds per replicate.

View Article and Find Full Text PDF

Background: Understanding the size and surface charge (ζ-potential) of particles in the mixed micellar fraction produced by in vitro digestion is crucial to understand their cellular absorption and transport. The inconsistent presentation of micellar size data, often limited to average particle diameter, makes comparison of studies difficult. The present study aimed to assess different size data representations (mean particle diameter, relative intensity- or volume-weighted size distribution) to better understand physiological mixed micelle characteristics and to provide recommendations for size reporting and sample handling.

View Article and Find Full Text PDF

Today, curcumin's therapeutic properties are used in drug delivery systems. In this work, chitosan (CS) /Montmorillonite (MMT) hydrogels were synthesized to improve the performance of curcumin molecules. According to the results, drug release characteristics of CS/MMT/curcumin highly depend on the pH of the environment and properties of Ag nanoparticles.

View Article and Find Full Text PDF

Development of Antibacterial Hydrogels Based on Biopolymer Aloe Vera/Gelatin/Sodium Alginate Composited With SM-AgNPs Loaded Curcumin-Nanoliposomes.

Macromol Biosci

January 2025

Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.

To address the rising prevalence of bacterial infections and the need for innovative therapeutic solutions, this study has developed a novel antibacterial hydrogel composite composed of Aloe vera, gelatin, sodium alginate, and Sterculia monosperma-silver nanoparticles (SM-AgNPs) loaded curcumin-nanoliposomes (NLPs). The aloe vera/gelatin/sodium alginate hydrogels (AGS) are prepared using different weight ratios of Aloe vera, gelatin, and sodium alginate, aiming to optimize mechanical properties and biocompatibility for biomedical applications. The incorporation of SM-AgNPs and curcumin-loaded NLPs enhanced the hydrogels' antibacterial properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!