Mercury in the pelagic food web of Lake Champlain.

Ecotoxicology

Ecosystems Research Group, Ltd., PO Box 1227, Norwich, VT 05055, USA.

Published: April 2012

Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25-75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 μg g(-1) in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309279PMC
http://dx.doi.org/10.1007/s10646-011-0829-4DOI Listing

Publication Analysis

Top Keywords

mercury
17
lake champlain
16
ecosystem productivity
12
fish tissue
12
tissue mercury
12
food web
8
mercury trophic
8
mercury water
8
water seston
8
nutrient loading
8

Similar Publications

Heavy metal contamination of drinking water, primarily driven by industrial activities, represents a critical challenge, with implications for human health and environmental safety. Gujranwala is an industrial and thickly populated city. The current study aimed to assess and compare heavy metal contamination levels in drinking water from five industrial areas and evaluate their potential impacts on human health.

View Article and Find Full Text PDF

The Wanshan mercury mining area (WMMA) in Guizhou Province, China, has been identified as a region at high ecological risk owing to heavy metal contamination. This study employed non-lethal sampling methods, using the phalanges of Pelophylax nigromaculatus in the WMMA as analytical material. Ten heavy metal (metalloid) elements were selected for analysis, including Hg, Cr, Mn, Ni, Cu, Zn, Cd, Pb, As, and Se.

View Article and Find Full Text PDF

The ground-based solar telescope THEMIS performed several observations of Mercury's sodium exosphere in years 2011-2013, when the MESSENGER spacecraft was orbiting around the planet. Typical two-peak exospheric patterns were frequently identified. In previous studies, some specific cases of THEMIS Na two-peak observations were characterized and related to IMF conditions, during specific extreme cases, in the occasion of CME arrival.

View Article and Find Full Text PDF

Mercury (Hg) is a global pollutant of widespread concern, and modern Hg levels have been much elevated compared to pre-industrial levels. The majority of environmental Hg assessment has occurred in the developed world within the temperate region, but recent years we have witnessed increases in research activities in polar, subtropical, and tropical biomes. East Asia is currently the biggest emitter of anthropogenic Hg, while intense research is ongoing in China, Korea, and Japan, relatively little has been done in the neighboring regions.

View Article and Find Full Text PDF

Returning raw straw to the soil can significantly elevate soil methylmercury (MeHg) and crop mercury (Hg) levels, underscoring the need to investigate safer approaches to straw utilization in mercury-contaminated regions. In this study, rice straw underwent anaerobic fermentation with the addition of sulfate, and the resulting fermentation products were utilized in a pot experiment involving water spinach to assess the impact of anaerobically fermented straw return on soil Hg methylation and its bioaccumulation. Findings revealed that the addition of sulfate during straw fermentation markedly increased the fermentation degree of the products, and sulfate was converted into organic sulfur-containing ligands that can functionalize the fermentation residuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!