To investigate the role and mechanism of ceramide (Cer) regulation in alcohol-induced neuronal proliferation and the newborn neurons formation, we used sphingomyelin synthase 2 (predominant enzyme of Cer metabolism) knockout (SMS2(-/-)) and wild type (WT) female mice to establish the model of prenatal alcohol exposure. In 24 h after being given birth (postnatal day 0, P0), the offspring of model mice received blood sphingomyelin (SM) measurement with enzymatic method. On P0, P7, P14 and P30, the proliferation of granule cells in the dentate gyrus and newborn neurons were investigated with immunofluorescent labeling. The expression of protein kinase Cα (PKCα) in the hippocampus was tested with Western blot analysis. The results showed that the SM level of blood in SMS2(-/-) pups was significantly lower than that in WT pups. No matter in SMS2(-/-) or WT mice, the prenatal alcohol exposure down-regulated the SM levels in pups with dose-dependency. In both SMS2(-/-) and WT pups, the number of proliferative neurons and newborn neurons in the dentate gyrus gradually decreased with the growing age. Compared with the WT pups, SMS2(-/-) pups showed significantly more proliferative neurons and newborn neurons in the dentate gyrus. Notably, prenatal alcohol exposure dose-dependently increased proliferative neurons and newborn neurons in the dentate gyrus in both WT and SMS2(-/-) pups. The hippocampal expression of PKCα protein in SMS2(-/-) mice was lower than that in WT mice, and prenatal alcohol exposure could up-regulate the PKCα protein expression in both WT and SMS2(-/-) mice with dose dependency. These results suggest that alcohol exposure during pregnancy can induce the compensatory neural cell proliferation and the production of newborn neurons in offspring, and the Cer-ceramide-1-phosphate (C1P) pathway is involved in alcohol-induced neural cell proliferation. The activation of PKCα may be a key step to start the Cer-C1P pathway and up-regulate the alcohol-induced neural cell proliferation and the newborn neurons formation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

newborn neurons
28
dentate gyrus
20
alcohol exposure
20
prenatal alcohol
16
sms2-/- pups
16
sms2-/- mice
12
proliferative neurons
12
neurons newborn
12
neurons dentate
12
neural cell
12

Similar Publications

Identifying the Pathogenicity of a Novel NPRL3 Missense Mutation Using Personalized Cortical Organoid Model of Focal Cortical Dysplasia.

J Mol Neurosci

December 2024

Department of Neurosurgery, National Children's Medical Center (Shanghai), Children's Hospital of Fudan University, No.399 Wan Yuan Avenue, Minhang District, Shanghai, 201102, China.

Focal cortical dysplasia (FCD) II is a cortical malformation characterized by cortical architectural abnormalities, dysmorphic neurons, with or without balloon cells. Here, we systematically explored the pathophysiological role of the GATOR1 subunit NPRL3 variants including a novel mutation from iPSCs derived from one FCD II patient. Three FCD II children aged 0.

View Article and Find Full Text PDF

Objectives: To observe the reparative effects of human umbilical cord mesenchymal stem cell (hUC-MSC) transplantation on white matter injury (WMI) in neonatal rats and explore its mechanism through the nuclear factor-kappa B (NF-κB) signaling pathway mediated by microglial cells.

Methods: Sprague-Dawley rats, aged 2 days, were randomly divided into three groups: sham-operation,WMI, and hUC-MSC (=18 each). Fourteen days after modeling, hematoxylin-eosin staining was used to observe pathological changes in the white matter, and immunofluorescence staining was used to measure the expression level of ionized calcium-binding adapter molecule 1 (Iba1).

View Article and Find Full Text PDF

Extraventricular neurocytoma (EVN) is a rare neuronal tumor with a marked tendency towards ganglionic or glial differentiation. Although EVN commonly occurs in young adults, congenital cases are extremely rare, and standardized therapeutic strategies remain undetermined. The presence of atypical features such as increased mitotic activity on histological analysis is correlated with a higher rate of recurrence and poor prognosis.

View Article and Find Full Text PDF

Neuromuscular disorders (NMD) with neonatal or early infantile onset are usually severe and differ in symptoms, complications, and treatment options. The establishment of a diagnosis relies on the combination of clinical examination, morphological analyses of muscle biopsies, and genetic investigations. Here, we re-evaluated and classified a unique collection of 535 muscle biopsies from NMD infants aged 0-6 months examined over a period of 52 years.

View Article and Find Full Text PDF

Genome-wide DNA methylation and gene expression in human placentas derived from assisted reproductive technology.

Commun Med (Lond)

December 2024

Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.

Background: Assisted reproductive technology (ART) has been associated with increased risks for growth disturbance, disrupted imprinting as well as cardiovascular and metabolic disorders. However, the molecular mechanisms and whether they are a result of the ART procedures or the underlying subfertility are unknown.

Methods: We performed genome-wide DNA methylation (EPIC Illumina microarrays) and gene expression (mRNA sequencing) analyses for a total of 80 ART and 77 control placentas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!